Summer of Code - Getting Started: Difference between revisions

Jump to navigation Jump to search
→‎Improve TIFF image support: removed (done in GSoC 2022)
(Many updates for GSoC 2022)
(→‎Improve TIFF image support: removed (done in GSoC 2022))
(32 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{Note|GNU Octave will apply as mentoring organization for GSoC 2022.}}
{{Note|GNU Octave is applying to be a [https://summerofcode.withgoogle.com/programs/2023/organizations/gnu-octave mentoring organization for GSoC 2023].}}


Since 2011 the GNU Octave project has successfully mentored:
Since 2011 the GNU Octave project has successfully mentored:
Line 25: Line 25:
#* Remember, '''we are volunteer developers and not your boss''' 🙂
#* Remember, '''we are volunteer developers and not your boss''' 🙂
# 📔 '''Prepare your proposal with us.'''
# 📔 '''Prepare your proposal with us.'''
#* If we see your proposal for the first time after the application deadline, it might easily contain some paragraphs not fully clear to us.  Ongoing interaction will give us more confidence that you are capable of working on your project 😓
#* Try to show us as early as possible a draft of your proposal 📑
#* Try to show us as early as possible a draft of your proposal 👍
#* If we see your proposal for the first time after the application deadline, it might easily contain some paragraphs not fully clear to us.  Ongoing interaction will give us more confidence that you are capable of working on your project 🙂👍
#* Then submit the proposal following the applicable rules, e.g. for [https://google.github.io/gsocguides/student/writing-a-proposal GSoC].
#* Then submit the proposal following the applicable rules, e.g. for [https://google.github.io/gsocguides/student/writing-a-proposal GSoC]. 📨


= How do we judge your application? =
= How do we judge your application? =
Line 47: Line 47:


You should know:
You should know:
# How to build Octave from it's source code using [http://en.wikipedia.org/wiki/GNU_build_system the GNU build system].
# How to build Octave from its source code using [http://en.wikipedia.org/wiki/GNU_build_system the GNU build system].
#* Read in this wiki: [[Developer FAQ]], [[Building]]
#* Read in this wiki: [[Developer FAQ]], [[Building]]
#* Tools to know: [https://en.wikipedia.org/wiki/GNU_Compiler_Collection gcc], [https://en.wikipedia.org/wiki/Make_(software) make]
#* Tools to know: [https://en.wikipedia.org/wiki/GNU_Compiler_Collection gcc], [https://en.wikipedia.org/wiki/Make_(software) make]
Line 58: Line 58:
The following suggested projects are distilled from the [[Projects]] page for the benefit of potential SoC participants.  You can also look at our [[Summer of Code|completed past projects]] for more inspiration.
The following suggested projects are distilled from the [[Projects]] page for the benefit of potential SoC participants.  You can also look at our [[Summer of Code|completed past projects]] for more inspiration.


{{Note|Do you use Octave at your university or do you have some numerical project in mind?  You are always welcome to '''propose your own projects'''.  If you are passionate about your project, it will be easy to find an Octave developer to mentor and guide you.}}
{{Note|Do you use Octave at your working place or university? Do you have some numerical project in mind?  You are always welcome to '''propose your own projects'''.  If you are passionate about your project, it will be easy to find an Octave developer to mentor and guide you.}}


== ode15{i,s} : Matlab Compatible DAE solvers ==
== ode15{i,s} : Matlab Compatible DAE solvers ==
Line 65: Line 65:
was done by [https://gsoc2016ode15s.blogspot.com/ Francesco Faccio during GSoC 2016].  The code is maintained in the main Octave repository and consists mainly of the following three files: [https://hg.savannah.gnu.org/hgweb/octave/file/tip/libinterp/dldfcn/__ode15__.cc {{path|libinterp/dldfcn/__ode15__.cc}}], [https://hg.savannah.gnu.org/hgweb/octave/file/tip/scripts/ode/ode15i.m {{path|scripts/ode/ode15i.m}}] and [https://hg.savannah.gnu.org/hgweb/octave/file/tip/scripts/ode/ode15s.m {{path|scripts/ode/ode15s.m}}].
was done by [https://gsoc2016ode15s.blogspot.com/ Francesco Faccio during GSoC 2016].  The code is maintained in the main Octave repository and consists mainly of the following three files: [https://hg.savannah.gnu.org/hgweb/octave/file/tip/libinterp/dldfcn/__ode15__.cc {{path|libinterp/dldfcn/__ode15__.cc}}], [https://hg.savannah.gnu.org/hgweb/octave/file/tip/scripts/ode/ode15i.m {{path|scripts/ode/ode15i.m}}] and [https://hg.savannah.gnu.org/hgweb/octave/file/tip/scripts/ode/ode15s.m {{path|scripts/ode/ode15s.m}}].


The {{manual|decic}} function for selecting consistent initial conditions for ode15i can be made more Matlab compatible by using [https://faculty.smu.edu/shampine/cic.pdf another algorithm].  Another useful extension is to make ode15{i,s} work with datatypes other than double and to improve interpolation at intermediate time steps.
The {{manual|decic}} function for selecting consistent initial conditions for ode15i can be made more Matlab compatible by using [http://dx.doi.org/10.1515/JNMA.2002.291 another algorithm].  Another useful extension is to make ode15{i,s} work with datatypes other than double and to improve interpolation at intermediate time steps.


* '''Project size'''
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours
: ~350 hours (medium)
* '''Required skills'''
* '''Required skills'''
: Octave, C/C++; familiarity with numerical methods for DAEs
: Octave, C/C++; familiarity with numerical methods for DAEs
Line 74: Line 74:
: Francesco Faccio, [https://octave.discourse.group/u/cdf Carlo de Falco], [https://octave.discourse.group/u/marco_caliari Marco Caliari], Jacopo Corno, [https://octave.discourse.group/u/schoeps Sebastian Schöps]
: Francesco Faccio, [https://octave.discourse.group/u/cdf Carlo de Falco], [https://octave.discourse.group/u/marco_caliari Marco Caliari], Jacopo Corno, [https://octave.discourse.group/u/schoeps Sebastian Schöps]


== Using Python within Octave ==
== Symbolic package ==
 
[[Pythonic]] allows one to call Python functions and interact with Python objects from within Octave .m file code and from the Octave command line interface.  Pythonic may eventually not be a separate package, but rather a core feature of Octave.  This project aims to improve Pythonic with the goal of making the package more stable, maintainable, and full-featured.
 
Based on a previous summer project related to Pythonic, this work will consist of fast-paced collaborative software development based on tackling the [https://gitlab.com/mtmiller/octave-pythonic/issues Pythonic issue list].  You would also be expected to participate in software design decisions and discussion, as well as improve documentation, doctests, and unit tests.  As an example of the sorts of decisions being made, note that Octave indexes from 1 whereas Python typically indexes from 0; in which cases is it appropriate to make this transparent to the user?
 
* '''Project size'''
: ~350 hours
* '''Required skills'''
: Octave, C/C++, Python
* '''Potential mentors'''
: [https://octave.discourse.group/u/mtmiller Mike Miller], [https://octave.discourse.group/u/cbm Colin B. Macdonald], Abhinav Tripathi
 
== Improve TIFF image support ==
 
[https://en.wikipedia.org/wiki/TIFF Tag Image File Format (TIFF)] is the de facto standard for scientific images.  Octave uses the [http://www.graphicsmagick.org/ GraphicsMagic] (GM) C++ library to handle [http://www.graphicsmagick.org/formats.html TIFF and many others image formats]. However, GM still has several limitations:
 
* GM has build option {{codeline|quantum}} which defines the bitdepth to use when reading an image:
** Building GM with '''high quantum''' means that images of smaller bitdepth will take a lot more memory when reading.
** Building GM with '''low quantum''' will make it impossible to read images of higher bitdepth. It also means that the image needs to always be rescaled to the correct range.
* GM supports unsigned integers only, thus incorrectly reading files such as TIFF with floating-point data.
* GM hides details of the image such as whether the image file is indexed.  This makes it hard to access the real data stored on file.


This project aims to implement better TIFF image support using [https://en.wikipedia.org/wiki/Libtiff libtiff], while leaving GM handle all other image formatsAfter writing a [https://octave.org/doc/v6.1.0/classdef-Classes.html classdef] interface to libtiff, improve the Octave functions {{manual|imread}}, {{manual|imwrite}}, and {{manual|imfinfo}} to make use of it.
The [[Symbolic package]] provides symbolic computing and other [https://en.wikipedia.org/wiki/Computer_algebra_system computer algebra system] toolsThe main component of Symbolic is a pure m-file class "@sym" which uses the Python package [https://www.sympy.org SymPy] to do (most of) the actual computations.  The package aims to expose much of the functionality of SymPy while also providing a high level of compatibility with the Matlab Symbolic Math Toolbox. The Symbolic package requires communication between Octave and Python. In 2016 a GSoC project successfully re-implemented this communication using the new [[Pythonic|Pythonic package]].  In 2022, a GSoC project revitalized and improved the maintainability of the package.


* '''Project size'''
Possible ideas for improving the Symbolic package:
: ~350 hours
* exposing more functionality of SymPy with ''less glue'' in between.  For example, we could allow OO-style method calls such as <code>f.diff(x)</code> as well as <code>diff(f, x)</code>.
* '''Required skills'''
* Fix the storage of non-expressions by working with upstream SymPy: currently we rely on deprecated functionality in SymPy.
: Octave, C/C++
* Fix classdef-related issues in Octave itself.
* '''Potential mentors'''
: [https://octave.discourse.group/u/carandraug Carnë Draug]


== PolarAxes and Plotting Improvements ==
== PolarAxes and Plotting Improvements ==
Line 110: Line 87:
Octave currently provides supports for polar axes by using a Cartesian 2-D axes and adding a significant number of properties and callback listeners to get things to work.  What is needed is the implementation of a dedicated "polaraxes" object in C++.  This will require creating a new fundamental graphics object type, and programming in C++/OpenGL to render the object.  When "polaraxes" exists as an object type, then m-files will be written to access them, including polaraxes.m, polarplot.m, rticks.m, rticklabels.m, thetaticks, thetaticklabels.m, rlim.m, thetalim.m.  This relates to bug {{bug|49804}}.
Octave currently provides supports for polar axes by using a Cartesian 2-D axes and adding a significant number of properties and callback listeners to get things to work.  What is needed is the implementation of a dedicated "polaraxes" object in C++.  This will require creating a new fundamental graphics object type, and programming in C++/OpenGL to render the object.  When "polaraxes" exists as an object type, then m-files will be written to access them, including polaraxes.m, polarplot.m, rticks.m, rticklabels.m, thetaticks, thetaticklabels.m, rlim.m, thetalim.m.  This relates to bug {{bug|49804}}.


* '''Project size'''
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours
: ~350 hours (medium)
* '''Required skills'''
* '''Required skills'''
: Octave, C/C++; optional experience with OpenGL programming
: Octave, C/C++; optional experience with OpenGL programming
Line 123: Line 100:
Based upon the existing approaches, the goal of this project is to define an initial subset of [https://www.mathworks.com/help/matlab/tables.htmlMatlab's table functions], which involve sorting, splitting, merging, and file I/O and implement it within the given time frame.
Based upon the existing approaches, the goal of this project is to define an initial subset of [https://www.mathworks.com/help/matlab/tables.htmlMatlab's table functions], which involve sorting, splitting, merging, and file I/O and implement it within the given time frame.


* '''Project size'''
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours
: ~350 hours (hard)
* '''Required skills'''
* '''Required skills'''
: Octave, C/C++
: Octave, C/C++
* '''Potential mentors'''
* '''Potential mentors'''
: [https://octave.discourse.group/u/siko1056 Kai]
: [https://octave.discourse.group/u/siko1056 Kai] [https://octave.discourse.group/u/Abdallah_Elshamy Abdallah]


== YAML encoding/decoding ==
== YAML encoding/decoding ==
Line 145: Line 122:
Finally, the package is considered to be merged into core Octave, probably after the GSoC project.  However, it can be used immediately from Octave as package and is backwards-compatible with older Octave versions.
Finally, the package is considered to be merged into core Octave, probably after the GSoC project.  However, it can be used immediately from Octave as package and is backwards-compatible with older Octave versions.


* '''Project size'''
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours
: ~175 hours (easy)
* '''Required skills'''
* '''Required skills'''
: Octave, C/C++
: Octave, C/C++
* '''Potential mentors'''
* '''Potential mentors'''
: [https://octave.discourse.group/u/siko1056 Kai]
: [https://octave.discourse.group/u/siko1056 Kai], [https://octave.discourse.group/u/Abdallah_Elshamy Abdallah]


== Symbolic package ==
== TISEAN package ==


The [[Symbolic package]] provides symbolic computing and other [https://en.wikipedia.org/wiki/Computer_algebra_system computer algebra system] tools. The main component of Symbolic is a pure m-file class "@sym" which uses the Python package [https://www.sympy.org SymPy] to do (most of) the actual computations.  The package aims to expose the full functionality of SymPy while also providing a high level of compatibility with the Matlab Symbolic Math Toolbox.  The Symbolic package requires communication between Octave and Python.  In 2016 another GSoC project successfully re-implemented this communication using the new [[Pythonic|Pythonic package]].
The [[TISEAN package]] provides an Octave interface to [https://www.pks.mpg.de/~tisean/Tisean_3.0.1/index.html TISEAN] is a suite of code for nonlinear time series analysis.  In 2015, another GSoC project started with the work to create interfaces to many TISEAN functions, but [[TISEAN_package:Procedure | there is still work left to do]].  There are missing functions to do computations on spike trains, to simulate autoregresive models, to create specialized plots, etc.  These are of importance for many scientific disciplines involving statistical computations and signal processing.


This project proposes to go further: instead of using Pythonic only for the communication layer, we'll use it throughout the Symbolic project.  For example, we might make "@sym" a subclass of "@pyobject".  We also could stop using the "python_cmd" interface and use Pythonic directly from methods.  The main goal was already mentioned: to expose the ''full functionality'' of SymPy.  For example, we would allow OO-style method calls such as <code>f.diff(x)</code> instead of <code>diff(f, x)</code>.
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
 
: ~350 hours (medium)
* '''Project size'''
: ~350 hours
* '''Required skills'''
* '''Required skills'''
: Octave, C/C++, Python; object-oriented programming (OOP) in Octave
: Octave, C/C++; FORTRAN API knowledge
* '''Potential mentors'''
* '''Potential mentors'''
: [https://octave.discourse.group/u/cbm Colin B. Macdonald], [https://octave.discourse.group/u/mtmiller Mike Miller], Abhinav Tripathi
: [https://octave.discourse.group/u/kakila KaKiLa]


== TISEAN package ==
== Better tab completion ==
Links: [https://savannah.gnu.org/bugs/index.php?62492 https://savannah.gnu.org/bugs/index.php?62492] and [https://savannah.gnu.org/bugs/?53384 https://savannah.gnu.org/bugs/?53384]
 
Description: currently pressing Tab at the Octave command prompt attempts autocompletion of all identifiers in scope (variables, functions, classdefs etc) as well as files and directories in the path. It is not context sensitive.
 
Project: Improve tab completion. For example,
 
* Typing
: load x
and then pressing tab should ideally give all loadable files and directories starting with x, not unrelated results like variables or functions.
 
* Typing
:cd
and tab should only give directories.
 
* Any file and directory names that are included in the results should include those with spaces and special characters including those that would be interpreted as operators by Octave.
 
* Typing commands like
: axis
or
: format
and pressing tab should give only those options relevant to that command. E.g. format can be followed by short / long / loose / compact etc but not by a file or variable. Similarly axis can be followed by ij / xy / tight / equal / actual limits etc but not by files or directories. And so on for other commands. This should be made possible for both preexisting commands and for yet-to-be-written commands without any rewriting of existing function code or documentation.
 
To get more examples, see how bash completion works. You can type git or hg and then tab and it will give the list of available commands. If you type "sort --r" and then tab, it gives the list of options to sort starting with "--r", etc.
 
== Graphics rendering back to front sorting ==
Several incompatibilities have been identified in how Octave plots transparent objects in 3D, causing certain transparent objects to hide opaque objects behind them even though they're not supposed to. The vast majority of them were isolated to one problem: if the objects to be drawn are rendered such that the one farthest away from the viewer is rendered first and nearer objects are rendered on top of that, then transparency would be automatically achieved, but this needs very careful coding to stay performant and to avoid rendering objects that will be overwritten fully by others. See [https://savannah.gnu.org/bugs/?57980] for a summary.
 
This project can be a GSoC for a student who understands 3D graphics rendering.
 
= Project sizes =
 
Since GSoC 2022 there exist two project sizes<ref>https://groups.google.com/g/google-summer-of-code-announce/c/_ekorpcglB8</ref><ref>https://google.github.io/gsocguides/mentor/defining-a-project-ideas-list</ref>:
* '''~175 hours''' (~12 weeks, Jun 13 - Sept 12)
* '''~350 hours''' (~22 weeks, Jun 13 - Nov 21)
 
= Footnotes =
 
<references />


The [[TISEAN package]] provides an Octave interface to [https://www.pks.mpg.de/~tisean/Tisean_3.0.1/index.html TISEAN] is a suite of code for nonlinear time series analysis.  In 2015, another GSoC project started with the work to create interfaces to many TISEAN functions, but [[TISEAN_package:Procedure | there is still work left to do]].  There are missing functions to do computations on spike trains, to simulate autoregresive models, to create specialized plots, etc.  Which are of importance for many scientific disciplines involving statistical computations and signal processing.
= See also =


* '''Project size'''
* https://summerofcode.withgoogle.com/
: ~350 hours
* [https://google.github.io/gsocguides/student/ GSoC Student Guide]
* '''Required skills'''
* [https://google.github.io/gsocguides/mentor/ GSoC Mentor Guide]
: Octave, C/C++; FORTRAN API knowledge
* [https://developers.google.com/open-source/gsoc/timeline GSoC Timeline]
* '''Potential mentors'''
: [https://octave.discourse.group/u/kakila KaKiLa]


[[Category:Summer of Code]]
[[Category:Summer of Code]]
[[Category:Project Ideas]]
[[Category:Project Ideas]]

Navigation menu