Category:Installation: Difference between revisions

From Octave
Jump to navigation Jump to search
No edit summary
 
Line 1: Line 1:
== Operating system ==
% Define the function dy/dx = yx - x^3
f = @(x, y) y*x - x^3;


=== Commercial ===
% Initial conditions
x0 = 0;
y0 = 1;
h = 0.6;
xf = 1.8;


<gallery>
% Number of steps
File:Windows darkblue 2012.svg|link=Octave for Microsoft Windows|[[Octave for Microsoft Windows|Microsoft Windows]]
n = round((xf - x0) / h);
File:MacOS wordmark (2017).svg|link=Octave for macOS|[[Octave for macOS|macOS]]
</gallery>


=== [[Octave for GNU/Linux|GNU/Linux]] ===
% Initialize arrays for solutions
x_values = x0:h:xf;


* '''Distributions'''
% Euler's Explicit Method
y_euler = zeros(1, n+1);
y_euler(1) = y0;
for i = 1:n
    y_euler(i+1) = y_euler(i) + h * f(x_values(i), y_euler(i));
end


<gallery>
File:Debian-OpenLogo.svg|link=Octave for Debian systems|[[Octave for Debian systems|Debian]]
File:Logo-ubuntu cof-orange-hex.svg|link=Octave for Debian systems|[[Octave for Debian systems|Ubuntu]]
File:Archlinux-vert-dark.svg|link=Octave for Arch Linux|[[Octave for Arch Linux|Arch Linux]]
File:Slackware_logo.svg|link=Octave for Slackware|[[Octave for Slackware|Slackware]]
File:Gentoo_Linux_logo_matte.svg|link=Octave for GNU/Linux#Gentoo|[[Octave for GNU/Linux#Gentoo|Gentoo]]
File:Fedora logo.svg|link=Octave for Red Hat Linux systems|[[Octave for Red Hat Linux systems|Fedora]]
File:OpenSUSE Logo.svg|link=Octave for openSUSE|[[Octave for openSUSE|openSUSE]]
File:CentOS_color_logo.svg|link=Octave for Red Hat Linux systems|[[Octave for Red Hat Linux systems|CentOS]]
File:Tux.png|link=Octave for Red Hat Linux systems|[[Octave for Red Hat Linux systems|RHEL]]
</gallery>


% Display results
disp('x values:'), disp(x_values);
disp('Euler method results:'), disp(y_euler);


* '''Distribution independent'''


<gallery>
% Plot the solutions
File:Docker (container engine) logo.svg|link=Octave for GNU/Linux#Docker|[[Octave for GNU/Linux#Docker_.2F_Podman_.2F_Singularity|Docker / Podman / Singularity]]
figure;
File:Flatpak logo.png|link=Octave for GNU/Linux#Flatpak|[[Octave for GNU/Linux#Flatpak|Flatpak]]
plot(x_values, y_euler, '-o', 'DisplayName', 'Euler Method');
File:Guix logo.svg|link=Octave for GNU/Linux#Guix|[[Octave for GNU/Linux#Guix|Guix]]
hold on;
File:Brew_logo.svg|link=Octave for GNU/Linux#Homebrew_on_Linux|[[Octave for GNU/Linux#Homebrew_on_Linux|Homebrew]]
xlabel('x');
File:Tux.png|link=MXE|[[MXE]]
ylabel('y');
File:snapcraft.png|link=Octave for GNU/Linux#Snap|[[Octave for GNU/Linux#Snap|Snap]]
title('Solutions to dy/dx = yx - x^3');
</gallery>
legend;
 
grid on;
=== [[Octave for other Unix systems|Other Unix systems]] ===
 
<gallery>
File:Android_logo_2019.svg|100px|link=Octave for Android|[[Octave for Android|Android]]
File:Tux.png|link=Octave for other Unix systems|[[Octave for other Unix systems|FreeBSD]]
File:OpenBSD textual logo.svg|link=Octave for other Unix systems|[[Octave for other Unix systems|OpenBSD]]
</gallery>
 
== Other ==
 
<gallery>
File:Jupyter logo.svg|link=https://github.com/Calysto/octave_kernel |[https://github.com/Calysto/octave_kernel Jupyter]
</gallery>

Latest revision as of 13:05, 30 November 2024

% Define the function dy/dx = yx - x^3 f = @(x, y) y*x - x^3;

% Initial conditions x0 = 0; y0 = 1; h = 0.6; xf = 1.8;

% Number of steps n = round((xf - x0) / h);

% Initialize arrays for solutions x_values = x0:h:xf;

% Euler's Explicit Method y_euler = zeros(1, n+1); y_euler(1) = y0; for i = 1:n

   y_euler(i+1) = y_euler(i) + h * f(x_values(i), y_euler(i));

end


% Display results disp('x values:'), disp(x_values); disp('Euler method results:'), disp(y_euler);


% Plot the solutions figure; plot(x_values, y_euler, '-o', 'DisplayName', 'Euler Method'); hold on; xlabel('x'); ylabel('y'); title('Solutions to dy/dx = yx - x^3'); legend; grid on;