Changes

Jump to navigation Jump to search
682 bytes added ,  13:45, 9 June 2015
→‎Tutorials: adding Finding unstable periodic orbits tutorial
Line 27: Line 27:  
The {{Codeline|dim_*}} variables hold the dimension (so here 1:5), and {{Codeline|frac_*}} contain the fraction of false nearest neighbors. From this chart we can obtain the sufficient embedding dimension for each system. For a Henon Map {{Codeline|m = 2}} is sufficient, but for an Ikeda map it is better to use {{Codeline|m = 3}}.
 
The {{Codeline|dim_*}} variables hold the dimension (so here 1:5), and {{Codeline|frac_*}} contain the fraction of false nearest neighbors. From this chart we can obtain the sufficient embedding dimension for each system. For a Henon Map {{Codeline|m = 2}} is sufficient, but for an Ikeda map it is better to use {{Codeline|m = 3}}.
 
[[File:tisean_false_neigh.png|400px|center]]
 
[[File:tisean_false_neigh.png|400px|center]]
 +
 +
=== Finding Unstable Periodic Orbits ===
 +
Here I will demonstrate how to find unstable periodic orbits. This section is based on the TISEAN documentation chapter [http://www.mpipks-dresden.mpg.de/~tisean/Tisean_3.0.1/docs/chaospaper/node19.html#SECTION00053000000000000000 Finding unstable periodic orbits]. We will start by finding these orbits using function {{Codeline|upo}}.
 +
{{Code|Finding unstable periodic orbits|<syntaxhighlight lang="octave" style="font-size:13px">
 +
# Create maps
 +
hen      = henon (1000);
 +
hen_noisy = hen + std (hen) * 0.02 .* (-6 + sum (rand ([size(hen), 12]), 3));
 +
# Find orbits
 +
up        = upo(hen(:,1), 2, 'p',6,'v',0.1, 'n', 100);
 +
</syntaxhighlight>}}
    
=== Nonlinear Prediction ===
 
=== Nonlinear Prediction ===
156

edits

Navigation menu