240
edits
m (Fixed some wording) |
|||
Line 236: | Line 236: | ||
Above mentioned operations can also be applied element-wise to interval vectors and matrices. Many operations use [http://www.gnu.org/software/octave/doc/interpreter/Vectorization-and-Faster-Code-Execution.html#Vectorization-and-Faster-Code-Execution vectorization techniques]. | Above mentioned operations can also be applied element-wise to interval vectors and matrices. Many operations use [http://www.gnu.org/software/octave/doc/interpreter/Vectorization-and-Faster-Code-Execution.html#Vectorization-and-Faster-Code-Execution vectorization techniques]. | ||
In addition, there are matrix operations on interval matrices. These operations comprise: exact dot product, exact matrix multiplication, exact vector sums, (not-exact) matrix inversion, matrix powers, and solving linear systems. As a result of missing hardware / low-level library support and missing optimizations, these operations are quite slow compared to familiar operations in floating-point arithmetic. | In addition, there are matrix operations on interval matrices. These operations comprise: exact dot product, exact matrix multiplication, exact vector sums, (not-exact) matrix inversion, matrix powers, and solving linear systems. As a result of missing hardware / low-level library support and missing optimizations, these operations are quite slow compared to familiar operations in floating-point arithmetic. | ||
''Technical background information: The interval package simulates a [http://books.google.de/books?hl=de&id=I7X9EVfeV5EC&q=accumulator Kulisch accumulator] in software to produce tightly rounded results.'' | |||
octave:1> A = infsup ([1, 2, 3; 4, 0, 0; 0, 0, 0], [1, 2, 3; 4, 0, 6; 0, 0, 1]) | octave:1> A = infsup ([1, 2, 3; 4, 0, 0; 0, 0, 0], [1, 2, 3; 4, 0, 6; 0, 0, 1]) | ||
A = 3×3 interval matrix | A = 3×3 interval matrix |
edits