Interval package: Difference between revisions

Jump to navigation Jump to search
244 bytes removed ,  14 October 2014
m
Converted Latex markup into mediawiki markup
m (Converted Latex markup into mediawiki markup)
Line 34: Line 34:


=== Moore's fundamental theroem of interval arithmetic ===
=== Moore's fundamental theroem of interval arithmetic ===
Let <math>\mathbf{y} = f(\mathbf{x})</math> be the result of
Let '''''y''''' = ''f''('''''x''''') be the result of
interval-evaluation of <math>f</math> over a box <math>\mathbf{x} = (x_1,\ldots{},x_n)</math>
interval-evaluation of ''f'' over a box '''''x''''' = (''x''<sub>1</sub>, … , ''x''<sub>''n''</sub>)
using any interval versions of its component library functions. Then
using any interval versions of its component library functions. Then
# In all cases, <math>\mathbf{y}</math> contains the range of <math>f</math> over <math>\mathbf{x}</math>, that is, the set of <math>f(\mathbf{x})</math> at points of <math>\mathbf{x}</math> where it is defined: <math>\mathbf{y} \supseteq \operatorname{Rge}(f \vert \mathbf{x}) = \{ f(\mathbf{x}) \vert x \in \mathbf{x} \cap \operatorname{Dom}(f)\}</math>
# In all cases, '''''y''''' contains the range of ''f'' over '''''x''''', that is, the set of ''f''('''''x''''') at points of '''''x''''' where it is defined: '''''y''''' ⊇ Rge(''f'' | '''''x''''') = {''f''(''x'') | ''x'' ∈ '''''x''''' ∩ Dom(''f'') }
# If also each library operation in <math>f</math> is everywhere defined on its inputs, while evaluating <math>\mathbf{y}</math>, then <math>f</math> is everywhere defined on <math>\mathbf{x}</math>, that is <math>\operatorname{Dom}(f) \supseteq \mathbf{x}</math>.
# If also each library operation in ''f'' is everywhere defined on its inputs, while evaluating '''''y''''', then ''f'' is everywhere defined on '''''x''''', that is Dom(''f'') ⊇ '''''x'''''.
# If in addition, each library operation in <math>f</math> is everywhere continuous on its inputs, while evaluating <math>\mathbf{y}</math>, then <math>f</math> is everywhere continuous on <math>\mathbf{x}</math>.
# If in addition, each library operation in ''f'' is everywhere continuous on its inputs, while evaluating '''''y''''', then ''f'' is everywhere continuous on '''''x'''''.
# If some library operation in <math>f</math> is nowhere defined on its inputs, while evaluating <math>\mathbf{y}</math>, then <math>f</math> is nowhere defined on <math>\mathbf{x}</math>, that is <math>\operatorname{Dom}(f) = \emptyset</math>.
# If some library operation in ''f'' is nowhere defined on its inputs, while evaluating '''''y''''', then ''f'' is nowhere defined on '''''x''''', that is Dom(''f'') ∩ '''''x''''' = Ø.


== Quick start introduction ==
== Quick start introduction ==
240

edits

Navigation menu