Jump to navigation Jump to search
Minor fixes.
== Find Something That Interests You ==
*: It's '''critical''' that you '''find a project that excites you'''. You'll be spending most of the summer working on it (we expect you to treat the SoC as a full-time job).
*: Don't just tell us how interested you are, show us that you're willing and able to '''contribute''' to Octave. You can do that by [ fixing a few bugs] or [http submitting patches] well before the deadline, in addition to regularly interacting with Octave maintainers and users on the mailing list and IRC. Our experience shows us that successful SoC students demonstrate their interest early and often.
== Prepare Your Proposal With Us ==
*: By working with us to prepare your proposal, you'll be getting to know us and showing us how you approach problems. The best place for this is your Wiki user page and the [ IRC channel].
*: '''You must demonstrate that you are able to build the development version of Octave from sources before the application deadline.''' Linux is arguably the easiest system to work on. Instructions:
*:* [[Building]]
*:* [ Octave Manual on Installing Octave]
* '''The Version Control System'''
*: We use [ Mercurial] (abbreviated hg).
* '''The Procedure for Contributing Changesets'''
*: You will be expected to follow the same procedures as other contributors and core developers.
*: You will be helping current and future Octave developers by using our standard style for changes, commit messages, and so on. You should also read the same [[Contribution guidelines | contribution]] [http guidelines] we have for everyone.
*: [[Hg_instructions_for_mentors#Mercurial_Tips_for_SoC_students | This page]] describes the procedures students are expected to use to publicly display their progress in a public mercurial repo during their work.
* '''The Maintainers Mailing List'''
=== Chebfun in Octave ===
[http / Chebfun] is a mathematics and software project for "numerical computing with functions". Basically it approximates functions to machine precision accuracy (10<sup>-15</sup>) using piecewise Chebyshev polynomial interpolants. Operations on those functions (arithmetic, derivatives, root-finding, etc) are then overloaded and return new interpolating polynomials, which are themselves proxies for the actual solution.
Chebfun makes extensive use of classdef classes, and is one of the largest Free Software projects to do so. Unfortunately it currently only works in Matlab. This project seeks to (1) improve Octave's classdef support and (2) tweak Chebfun to work under Octave, for example, removing undocumented classdef features. The final goal is to have at least basic Chebfun features working on Octave. An additional goal would be making "pkg install" work in Octave.
Octave has a preliminary implementation of a Variable Editor: a spreadsheet-like tool for quickly editing and visualizing variables. The initial phase of the project will be learning how the implementation was done.
With the knowledge gained, the second part of the project will be to implement a Property Inspector. This is a spreadsheet like interface to the many, many graphics properties that exist and are different on a per-object basis. The goal would be not only the concise-display of the existing properties, but a reasonable user interface to change them. As examples, boolean Boolean properties should be able to be toggled with a double-click; Radio properties should have a drop-down list of only the supported options; Other properties that can be modified should have the constraints built-in (for example, Linewidth must be a scalar, while Position must be a 1x4 vector). It would also be important to have easy access to the documentation of a property.
For reference, Matlab has a similar Property Inspector (

Navigation menu