Editing User:Josiah425:TISEAN Package

Jump to navigation Jump to search
User account "Josiah425:TISEAN Package" is not registered. Please check if you want to create/edit this page.
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 11: Line 11:
They are ordered so that according to my estimates the difficulty rises with the number. This is because typecasting and implicit typing (which is included in most of the FORTRAN files in the TISEAN library) can be problematic sometimes.
They are ordered so that according to my estimates the difficulty rises with the number. This is because typecasting and implicit typing (which is included in most of the FORTRAN files in the TISEAN library) can be problematic sometimes.


This number can be brought down significantly. This is because some programs are deprecated, others are just C/FORTRAN copies of each other, others are not important in GNU Octave (such as 'compare' and choose'). After taking the factors above into consideration the number of functions that need to be ported drops to 49. I have prepared a detailed discussion of all of those functions [[User:Josiah425:TISEAN_Package:Table_of_functions| here]]. This number will further drop once certain programs are confirmed to have similar programs in GNU Octave or some packages in Octave Forge.
Apart from the qualitative division I propose a work oriented division. In it each subpart can be tackled separately and create an entity in-and-of-itself. I chose to work along the lines of the articles about implementations of nonlinear timeseries included in the documentation. This article discusses various algorithms and what certain programs mean. It can be found [http://www.mpipks-dresden.mpg.de/~tisean/Tisean_3.0.1/docs/chaospaper/TiseanHTML.html| here]. I will discuss in which order I would like to port various topics from this article and where my work currently stands.
 
Apart from the qualitative division I propose a work oriented division. In it each subpart can be tackled separately and create an entity in-and-of-itself. I chose to work along the lines of the articles about implementations of nonlinear timeseries included in the documentation. This article discusses various algorithms and what certain programs mean. It can be found [http://www.mpipks-dresden.mpg.de/~tisean/Tisean_3.0.1/docs/chaospaper/TiseanHTML.html here]. I will discuss in which order I would like to port various topics from this article and where my work currently stands.
==== Nonlinear noise reduction ====
==== Nonlinear noise reduction ====
This is the first topic I chose. It is because it contains programs from all three categories. It is also relatively small -- it contains 3 programs: project, lazy, ghkss. I have chosen to further implement addnoise and henon, to demonstrate how project and ghkss work. Thus this topic contains programs from each category:  
This is the first topic I chose. It is because it contains programs from all three categories. It is also relatively small -- it contains 3 programs: project, lazy, ghkss. I have chosen to further implement addnoise and henon, to demonstrate how project and ghkss work. Thus this topic contains programs from each category:  
Line 19: Line 17:
* Linkable to FORTRAN (project, addnoise, lazy)
* Linkable to FORTRAN (project, addnoise, lazy)
* Linkable to c (ghkss)
* Linkable to c (ghkss)
I have already started working on this stage. My progress can be viewed at [https://bitbucket.org/josiah425/tisean https://bitbucket.org/josiah425/tisean]. So far I have implemented addnoise, project and re-implemented henon as an mfile. As most work on this topic has been completed I estimate that finishing it up will take around 2 days -- throughout my outline I estimate about 1 day per program (that includes documentation and testing).
I have already started work on this stage. My progress can be viewed at [https://bitbucket.org/josiah425/tisean| https://bitbucket.org/josiah425/tisean]. So far I have implemented addnoise, project and re-implemented henon as an mfile. As most work on this topic has been completed I estimate that finishing it up will take around 2 days -- throughout my outline I estimate about 1 day per program (that includes documentation and testing).


==== Phase space representation ====
==== Phase space representation ====
This is the next topic that needs to be implemented. This is because it contains programs (especially 'delay') that are used to visualize data. Whenever an example is given in the package the resulting data is routed through 'delay' before it is plotted. Apart from delay it also contains other functions that can divided into the following categories:
This is the next topic that needs to be implemented. This is because it contains programs (especially 'delay') that are used to visualize data. Whenever an example is given in the package the resulting data is routed through 'delay' before it is plotted. Apart from delay it also contains other functions that can divided into the following categories:
* Linkable to FORTRAN (autocorr, pc)
* Linkable to c (delay, corr, mutual, false_nearest, pca)
* Linkable to c (delay, corr, mutual, false_nearest, pca)
There are two more programs in this section of the article they are: 'autocorr' and 'pc', both implemented in FORTRAN. There is no need to port them as according to the documentation ([http://www.mpipks-dresden.mpg.de/~tisean/Tisean_3.0.1/docs/contents.html here]) they are redundant with other functions. Further more, it is likely 'corr' does not need to be implemented, because 'xcorr' in signal package seems to have similar functionality. This has not been confirmed yet, once that occurs, a definite answer can be given.
Assuming around a day for each function (with testing and documenting the usage) I assume this stage will take a little over a week.
Assuming around a day for each function (with testing and documenting the usage) I assume this stage will take a little under a week.
==== Nonlinear prediction ====
==== Nonlinear prediction ====
This seems like a reasonable next step. It consists of the following programs:
This seems like a reasonable next step. It consists of the following programs:
Line 37: Line 35:
==== Dimensions and entropies ====
==== Dimensions and entropies ====
This topic is next on the list. Programs it include are as follows:
This topic is next on the list. Programs it include are as follows:
* Linkable to FORTRAN (c2, c2t, c2d, c2g, c1)
* Linkable to FORTRAN (c2naive, c2, c2t, c2d, c2g, c1)
* Linkable to C (d2, boxcount)
* Linkable to C (d2, boxcount)
This part of the article also mentions 'c2naive' which is implemented in FORTRAN, but it is also described as redundant by the documentation ([http://www.mpipks-dresden.mpg.de/~tisean/Tisean_3.0.1/docs/contents.html here])
This stage should take little over a week. I expect this stage and the previous one to take about two weeks.
This stage should take little over a week. I expect this stage and the previous one to take about two weeks.
==== Testing for nonlinearity ====
==== Testing for nonlinearity ====
Line 45: Line 42:
* Linkable to FORTAN (surrogates, randomize , timerev)
* Linkable to FORTAN (surrogates, randomize , timerev)
This stage should take me about 3 days to complete.
This stage should take me about 3 days to complete.
==== Tutorial ====
I also plan to port all of the functions needed for the four exercises described in the 'Tutorial' section of the documentation. The programs that need to be ported additionally are as follows:
* Linkable to FORTRAN (stp)
* Linkable to C (ar-model, d2, poincare, recurr, nstat_z)
The programs: 'spectrum', 'historgram', 'extrema', 'corr' need to have a confirmed equivalent function in GNU Octave.
This stage should take me about a week.
=== Notes on time estimates ===
=== Notes on time estimates ===
Totaling up the above estimates it should take me 6-7 weeks to complete my task as outlined above.  
Totaling up the above estimates it should take me 6 weeks to complete my task as outlined above. I do think my time estimates are rather conservative, but I would rather work on other programs (the documentation contains another article located [http://www.mpipks-dresden.mpg.de/~tisean/Tisean_3.0.1/docs/surropaper/Surrogates.html| here]) than to be overwhelmed with the work and try to rush trough. As I am not fully familiar with the mathematical concepts discussed within these articles I want to make sure that I reduce the possibility of error when linking programs to octave to a minimum. If I vastly overestimated the time I will need to port those functions I intend to finish the 'Visualization, non-stationary' section of the work on nonlinear timeseries and then proceed to programs from the 'Surrogate time series article'.
 
My estimates might be high, but I believe it is more important to complete the task thoroughly than to port more programs haphazardly.


== Details of work on each program ==
== Details of work on each program ==
Please note that all contributions to Octave may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Octave:Copyrights for details). Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)