Projects: Difference between revisions

Jump to navigation Jump to search
1,799 bytes removed ,  16 September 2020
(→‎Sparse Matrices: Move SPQR Interface project from Summer of Code - Getting Started.)
(23 intermediate revisions by 6 users not shown)
Line 1: Line 1:
The list below summarizes features or bug fixes we would like to see in Octave. if you start working steadily on a project, please let octave-maintainers@octave.org know. We might have information that could help you. You should also read the [[Contribution guidelines |Contributing Guidelines]].
The list below summarizes features or bug fixes we would like to see in Octave. This list is not exclusive -- there are many other things that might be good projects, but it might instead be something we already have. Also, some of the following items may not actually be considered good ideas now.


This list is not exclusive -- there are many other things that might be good projects, but it might instead be something we already have. Also, some of the following items may not actually be considered good ideas now. So please check with octave-maintainers@octave.org before you start working on some large project.
{{Note|If you never contributed to Octave before, we suggest to start with our [[Developer FAQ]].}}


Summer of Code students, please also see [[SoC Project Ideas]].
* Summer of Code students, please also see [[Summer of Code - Getting Started]].
 
* If you're looking for small project, see [[short projects]].
If you're looking for small project, something more suited to start getting involved with Octave development or to fill a boring evening, see [[short projects]]


=Numerical=
=Numerical=
Line 35: Line 34:
*Evaluate harmonics and cross-correlations of unevenly sampled and nonstationary time series, as in http://www.jstatsoft.org/v11/i02 (which has C code with interface to R). (This is now partly implemented in the [http://octave.sourceforge.net/lssa/index.html lssa] package.)
*Evaluate harmonics and cross-correlations of unevenly sampled and nonstationary time series, as in http://www.jstatsoft.org/v11/i02 (which has C code with interface to R). (This is now partly implemented in the [http://octave.sourceforge.net/lssa/index.html lssa] package.)


== General purpose Finite Element library ==
<!-- == General purpose Finite Element library ==


Octave-Forge already has a set of packages for discretizing Partial Differential operators by Finite Elements and/or Finite Volumes,
Octave-Forge already has a set of packages for discretizing Partial Differential operators by Finite Elements and/or Finite Volumes,
Line 45: Line 44:
* create new functions specifically suited for Octave
* create new functions specifically suited for Octave
* improve the efficiency of the code
* improve the efficiency of the code
The main goal for the fem-fenics package is ultimately to be merged with the FEnics project itself, so that it can remain in-sync with the main library development.
The main goal for the fem-fenics package is ultimately to be merged with the FEnics project itself, so that it can remain in-sync with the main library development. -->


== Implement solver for initial-boundary value problems for parabolic-elliptic PDEs in 1D ==
== Implement solver for initial-boundary value problems for parabolic-elliptic PDEs in 1D ==
Line 57: Line 56:
Details on the methods to be implemented can be found in [http://dx.doi.org/10.1145/502800.502801 this paper] on bvp4c and [http://www.jnaiam.net/new/uploads/files/014dde86eef73328e7ab674d1a32aa9c.pdf this paper] on bvp5c. Further details are available in [http://books.google.it/books/about/Nonlinear_two_point_boundary_value_probl.html?id=s_pQAAAAMAAJ&redir_esc=y this book].
Details on the methods to be implemented can be found in [http://dx.doi.org/10.1145/502800.502801 this paper] on bvp4c and [http://www.jnaiam.net/new/uploads/files/014dde86eef73328e7ab674d1a32aa9c.pdf this paper] on bvp5c. Further details are available in [http://books.google.it/books/about/Nonlinear_two_point_boundary_value_probl.html?id=s_pQAAAAMAAJ&redir_esc=y this book].


== Geometric integrators for Hamiltonian Systems ==
<!-- == Geometric integrators for Hamiltonian Systems ==


[http://openlibrary.org/books/OL9056139M/Geometric_Numerical_Integration Geometric (AKA Symplectic) integrators] are useful for  
[http://openlibrary.org/books/OL9056139M/Geometric_Numerical_Integration Geometric (AKA Symplectic) integrators] are useful for  
Line 78: Line 77:
* SHAKE, see [http://en.wikipedia.org/wiki/Constraint_algorithm here] or [http://dx.doi.org/10.1016/0021-9991(77)90098-5 here]
* SHAKE, see [http://en.wikipedia.org/wiki/Constraint_algorithm here] or [http://dx.doi.org/10.1016/0021-9991(77)90098-5 here]
* RATTLE, see [http://dx.doi.org/10.1016/0021-9991(83)90014-1 here] or [http://dx.doi.org/10.1002/jcc.540161003 here]
* RATTLE, see [http://dx.doi.org/10.1016/0021-9991(83)90014-1 here] or [http://dx.doi.org/10.1002/jcc.540161003 here]
-->


== Matlab-compatible ODE solvers in core-Octave ==
== Matlab-compatible ODE solvers in core-Octave ==


* <strike> Adapt "odeset" and "odeget" from the odepkg package so that the list of supported options is more Matlab-compatible, in the sense that all option names that are supported by Matlab should be available. On the other hand, Matlab returns an error if an option which is not in the list of known options is passed to "odeset", but we would rather make this a warning in order to allow for special extensions, for example for symplectic integrators. </strike>
* Improve handling of sparse Jacobians in IDE/DAE solvers
* <strike> Adapt the interface of "ode45" in odepkg to be completely Matlab compatible, fix its code and documentation style and move it to Octave-core. </strike>
** Currently, in the IDA wrapper function __ode15__ an over conservative guess for the amount of memory to be allocated when assembling a sparse jacobian is used, essentially allocating enough space for a full jacobian then freeing the excess memory, an initial patch for fixing this has been posted on the tracker, for integrating this into Octave it must be generalized to support prior versions of SUNDIALS
* <strike> Build Matlab compatible versions of "ode15s" and "ode15i". jwe has prototype implementations [https://savannah.gnu.org/patch/?8102 here] of these built as wrappers to "dassl" and "daspk". An initial approach could be to just improve these wrappers, but eventually it would be better to have wrappers for "IDA" from the sundials library. </strike>
** Currently Jacobians passed by the user in Octave's sparse matrix format are copied into SUNDIALS own sparse matrix format. Newer versions of SUNDIALS (5.x or higher) support letting the user take care of the linear algebra data structures and methods thus removing the need for the copy. Taking advantage of this feature would improve the solver performance both in terms of memory footprint and speed.
** References
***[https://savannah.gnu.org/bugs/?func=detailitem&item_id=55905 tracker post about memory allocation]  
***[https://computing.llnl.gov/projects/sundials/release-history SUNDIALS release history]
* Implement Matlab compatible versions of "deval".
* Implement Matlab compatible versions of "deval".
* Complete transition of ode23s into core Octave
** [https://savannah.gnu.org/bugs/?57309 Bug tracker entry discussing ode23s]


== High Precision Arithmetic Computation ==
== High Precision Arithmetic Computation ==
Line 254: Line 259:


*Use nanosleep instead of usleep if it is available? Apparently nanosleep is to be preferred over usleep on Solaris systems.
*Use nanosleep instead of usleep if it is available? Apparently nanosleep is to be preferred over usleep on Solaris systems.
*<strike>Per the following discussion, allow bsxfun style singleton dimension expansion as the default behavior for the builtin element-wise operators: http://octave.1599824.n4.nabble.com/Vector-approach-to-row-margin-frequencies-tp1636361p1636367.html</strike> This is done. <strike>Now [[User:JordiGH|I]] just have to document it.</strike> This is done too!


== Improve JIT compiling ==
== Improve JIT compiling ==
Line 288: Line 291:
* Implement one-to-many (Broadcast, Scatter), many-to-one (Reduce, Gather), and many-to-many (All Reduce, Allgather) communication routines
* Implement one-to-many (Broadcast, Scatter), many-to-one (Reduce, Gather), and many-to-many (All Reduce, Allgather) communication routines


=Graphics=
= Graphics =
 
*Correctly handle case where DISPLAY is unset. Provide --no-window-system or --nodisplay (?) option. Provide --display=DISPLAY option? How will this work with gnuplot (i.e., how do we know whether gnuplot requires an X display to display graphics)?


* Implement transparency and lighting in OpenGL backend(s). A basic implementation was available in [http://octave.svn.sourceforge.net/viewvc/octave/trunk/octave-forge/extra/jhandles/ JHandles]. This needs to be ported/re-implement/re-engineered/optimized in the C++ OpenGL renderer of octave.
* Correctly handle case where DISPLAY is unset. Provide --no-window-system or --nodisplay (?) option. Provide --display=DISPLAY option? How will this work with gnuplot (i.e., how do we know whether gnuplot requires an X display to display graphics)?


* Implement a Cairo-based renderer for 2D-only graphics, with support for PS/PDF/SVG output (for printing).
* Implement a Cairo-based renderer for 2D-only graphics, with support for PS/PDF/SVG output (for printing).
Line 298: Line 299:
* On 'imagesc' plots, report the matrix values also based on the mouse position, updating on mouse moving.
* On 'imagesc' plots, report the matrix values also based on the mouse position, updating on mouse moving.


* Add map-creating capabilities similar to the Matlab [http://www.mathworks.com/help/map/functionlist.html Mapping toolbox] for inclusion in the Octave Forge [https://sourceforge.net/p/octave/mapping mapping package].
* Add map-creating capabilities similar to the Matlab [https://www.mathworks.com/help/map/functionlist.html Mapping toolbox] for inclusion in the Octave Forge [https://sourceforge.net/p/octave/mapping mapping package].


* Add data cursor to trace data values in figure.
* Add data cursor to trace data values in figure.
== Lighting ==
Implement transparency and lighting in OpenGL backend(s). A basic implementation is available in [http://octave.svn.sourceforge.net/viewvc/octave/trunk/octave-forge/extra/jhandles/ JHandles]. This needs to be ported/re-implement/re-engineered/optimized in the C++ OpenGL renderer of Octave.
== Object selection in OpenGL renderer ==
This project is about the implementation of a selection method of graphics elements within the OpenGL renderer [http://glprogramming.com/red/chapter13.html]


== Non-OpenGL renderer ==
== Non-OpenGL renderer ==


Besides the original gnuplot backend, Octave also contains an OpenGL-based renderer for advanced and more powerful 3D plots. However, OpenGL is not perfectly suited for 2D-only plots where other methods could result in better graphics. The purpose of this project is to implement an alternate graphics renderer for 2D only plots (although 3D is definitely not the focus, extending the new graphics renderer to support basic 3D features should also be taken into account). There is no particular toolkit/library that must be used, but natural candidates are:
Besides the original gnuplot backend, Octave also contains an OpenGL-based renderer for advanced and more powerful 3D plots. However, OpenGL is not perfectly suited for 2D-only plots where other methods could result in better graphics. The purpose of this project is to implement an alternate graphics renderer for 2D only plots (although 3D is definitely not the focus, extending the new graphics renderer to support basic 3D features should also be taken into account). There is no particular toolkit/library that must be used, but natural candidates are:
* [http://qt.nokia.com Qt]: the GUI is currently written in Qt and work is also in progress to provide a Qt/OpenGL based backend [https://github.com/goffioul/QtHandles]
* [http://qt.nokia.com Qt]: the GUI is currently written in Qt
* [http://en.wikipedia.org/wiki/Cairo_%28software%29 Cairo]: this library is widely used and known to provides high-quality graphics with support for PS/PDF/SVG output.
* [http://en.wikipedia.org/wiki/Cairo_%28software%29 Cairo]: this library is widely used and known to provides high-quality graphics with support for PS/PDF/SVG output.


== TeX/LaTeX markup ==
== LaTeX markup ==
 
Text objects in plots (like titles, labels, texts...) in the OpenGL renderer only support plain text mode without any formatting possibility. Support for TeX and/or LaTeX formatting needs to be added.
 
* The TeX formatting support actually only consists of a very limited subset of the TeX language. This can be implemented directly in C++ into Octave by extending the existing text engine, avoiding to add a dependency on a full TeX system.  Essentially, support for Greek letters, super/sub-scripts, and several mathematical symbols needs to be supported.  For example,
 
:<pre>\alpha \approx \beta_0 + \gamma^\chi</pre>
 
:Would be rendered as,
 
:&alpha; &asymp; &beta;<sub>0</sub> + &gamma;<sup>&chi;</sup>
 
:This is analogous to how special characters may be included in a wiki using html.
 
:<pre>&amp;alpha; &amp;asymp; &amp;beta;<sub>0</sub> + &amp;gamma;<sup>&amp;chi;</sup></pre>
 
:The text object's {{Codeline|extent}} for the rendered result needs to be calculated and the text placed the location specified by the text object's {{Codeline|position}} property.  An itemized list of a text objects properties can be found [http://www.gnu.org/software/octave/doc/interpreter/Text-Properties.html here].
 
* On the other hand, the LaTeX formatting support is expected to provide full LaTeX capabilities. This will require to use an external LaTeX system to produce text graphics in some format (to be specified) that is then integrated into Octave plots.


:The matplotlib project [http://matplotlib.sourceforge.net/users/usetex.html has already done this in Python] and might be used as an example of how to do this in Octave.  Mediawiki has also also done [http://en.wikipedia.org/wiki/Wikipedia:Texvc something similar]. There is also [http://forge.scilab.org/index.php/p/jlatexmath/ JLaTeXMath], a Java API to display LaTeX code in mathematical mode.
Text objects in plots (like titles, labels, texts...) in the OpenGL renderer only support plain text and TeX. The latter consists of a very limited subset of the TeX language. On the other hand, the LaTeX formatting support is expected to provide full LaTeX capabilities. There are various approaches that can be used:
* Use an external LaTeX engine: this is the most straightforward, but it requires users to install a LaTeX distribution and setup Octave to use it.
* Use an external library that supports LaTeX syntax, e.g. [https://github.com/opencollab/jlatexmath JLaTeXMath] a Java API to display LaTeX code, [https://github.com/nathancarter/qtmathjax qtmathjax] a Qt based library that executes MathJax in a background web page.
* Implement our own LaTeX parser and renderer. The matplotlib project [http://matplotlib.sourceforge.net/users/usetex.html has already done this in Python] and might be used as an example of how to do this in Octave. There is also [https://github.com/jkriege2/JKQtPlotter JKQtPlotter], a Qt based plotting application which implements its own LaTeX parser/renderer in C++.


=History=
=History=
Line 350: Line 328:
*Fix history problems — core dump if multiple processes are writing to the same history file?
*Fix history problems — core dump if multiple processes are writing to the same history file?


=Configuration and Installation=
= Configuration and Installation =


*Makefile changes:
* Makefile changes:
**eliminate for loops
** eliminate for loops
**define shell commands or eliminate them
** define shell commands or eliminate them
**consolidate targets
** consolidate targets


*Create a docs-only distribution?
* Create a docs-only distribution?


*<strike> Convert build system to a non-recursive Automake setup. See how Makefile.am files currently include module.mk files in subdirectories, extend this concept to the entire project so there is only one top-level Makefile.am. </strike> Done, except for special dir libgnu which is the only SUBDIRS listed in configure.ac.
=Documentation=
 
:''See [[Project - Documentation]].''
=Documentation and On-Line Help=
 
*Improve the Texinfo Documentation for the interpreter. It would be useful to have lots more examples, to not have so many forward references, and to not have very many simple lists of functions.
 
*[[Doxygen]] documentation for the C++ classes.
 
*Make index entries more consistent to improve behavior of <code>help -i</code>.
 
*Make <code>help -i</code> try to find a whole word match first.
 
*Add more demo files.
 
*Flesh out this wiki


=Tests=
=Tests=
Line 379: Line 344:
**Tests for various functions. Would be nice to have a test file corresponding to every function (see below)
**Tests for various functions. Would be nice to have a test file corresponding to every function (see below)
**Tests for element by element operators: + - .* ./ .\ .^ | & < <= == >= > != !
**Tests for element by element operators: + - .* ./ .\ .^ | & < <= == >= > != !
*** thorough tests for power operator including corner cases and strange combinations such as complex .^ range.
**Tests for boolean operators: && ||
**Tests for boolean operators: && ||
**Tests for other operators: * / \ ' .'
**Tests for other operators: * / \ ' .'
Line 426: Line 392:


*Reduce the amount of datatypes in liboctave.
*Reduce the amount of datatypes in liboctave.
*Re-implement operators using templates and modern C++.  Current system evolved before templates and makes extensive use of macros to define interactions between scalar<->scalar, scalar<->matrix, scalar<->float, etc., etc.
**In liboctave, the directory to work on is liboctave/operators
**In libinterp, the directory to work on is libinterp/operators
**In libinterp, there is also xpow.cc, xdiv.cc in libinterp/corefcn


=Miscellaneous=
=Miscellaneous=
Line 460: Line 431:


* Help prepare and deliver presentations and [[Publications about Octave]] at colleges and universities.
* Help prepare and deliver presentations and [[Publications about Octave]] at colleges and universities.
* Create a [[Forum for GNU Octave]].


== Improve Windows binary packaging ==
== Improve Windows binary packaging ==
Line 472: Line 441:


We would like to be able to easily generate binary packages for macOS. Right now, it's difficult and tedious to do so. Most OS X users install Octave using one of the source-based package managers such as Homebrew or MacPorts. Any way to help us build a binary package would be appreciated. Required knowledge is understanding how building binaries in macOS works. Our current approach to building binaries for Windows is to cross-compile from a GNU system using [http://mxe.cc/ MXE], something similar may be possible for OS X ([http://lilypond.org/gub/ GUB]?).
We would like to be able to easily generate binary packages for macOS. Right now, it's difficult and tedious to do so. Most OS X users install Octave using one of the source-based package managers such as Homebrew or MacPorts. Any way to help us build a binary package would be appreciated. Required knowledge is understanding how building binaries in macOS works. Our current approach to building binaries for Windows is to cross-compile from a GNU system using [http://mxe.cc/ MXE], something similar may be possible for OS X ([http://lilypond.org/gub/ GUB]?).
There is a third-party project called [http://octave-app.org "Octave.app"] that creates and distributes macOS builds of Octave as a Mac app bundle. It is built on top of Homebrew and a set of custom Octave-related Homebrew formuale.


'''Skills Required''': Knowledge of GNU build systems, Makefiles, configure files, chasing library dependencies, how to use a compiler. If you choose to work on GUB, Python will be required. No m-scripting or C++ necessary, beyond understanding [http://david.rothlis.net/c/compilation_model/ the C++ compilation model].
'''Skills Required''': Knowledge of GNU build systems, Makefiles, configure files, chasing library dependencies, how to use a compiler. If you choose to work on GUB, Python will be required. No m-scripting or C++ necessary, beyond understanding [http://david.rothlis.net/c/compilation_model/ the C++ compilation model].
Line 477: Line 448:
=Performance=
=Performance=


*A profiler for Octave would be a very useful tool. And now we have one! But it really needs a better interface.
* A profiler for Octave would be a very useful tool. And now we have one! But it really needs a better interface.
*Having {{Codeline|parfor}} functioning would speed code development and execution now that multicore architectures are widespread. See [http://octave.1599824.n4.nabble.com/Parfor-td4630575.html here] and [http://stackoverflow.com/questions/24970519/how-to-use-parallel-for-loop-in-octave-or-scilab here]. Existing code from the [[Parallel package | parallel]] and [http://octave.sourceforge.net/mpi/index.html mpi] packages could perhaps be adapted for this.
* Having {{Codeline|parfor}} functioning would speed code development and execution now that multicore architectures are widespread. See [http://octave.1599824.n4.nabble.com/Parfor-td4630575.html here] and [http://stackoverflow.com/questions/24970519/how-to-use-parallel-for-loop-in-octave-or-scilab here]. Existing code from the [[Parallel package | parallel]] and [http://octave.sourceforge.net/mpi/index.html mpi] packages could perhaps be adapted for this.
* Develop a performance benchmark for Octave (interpreter, load/save, plotting, etc., but not simply tests of underlying libraries such as BLAS or LAPACK).  This benchmark could be run periodically to make sure that changes during development do not introduce regressions in performance.


=Packaging=
=Packaging=

Navigation menu