Editing Projects

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 304: Line 304:
* Implement one-to-many (Broadcast, Scatter), many-to-one (Reduce, Gather), and many-to-many (All Reduce, Allgather) communication routines
* Implement one-to-many (Broadcast, Scatter), many-to-one (Reduce, Gather), and many-to-many (All Reduce, Allgather) communication routines


= Graphics =
=Graphics=


* Correctly handle case where DISPLAY is unset. Provide --no-window-system or --nodisplay (?) option. Provide --display=DISPLAY option? How will this work with gnuplot (i.e., how do we know whether gnuplot requires an X display to display graphics)?
*Correctly handle case where DISPLAY is unset. Provide --no-window-system or --nodisplay (?) option. Provide --display=DISPLAY option? How will this work with gnuplot (i.e., how do we know whether gnuplot requires an X display to display graphics)?
 
* <strike>Implement transparency and lighting in OpenGL backend(s). A basic implementation was available in [http://octave.svn.sourceforge.net/viewvc/octave/trunk/octave-forge/extra/jhandles/ JHandles]. This needs to be ported/re-implement/re-engineered/optimized in the C++ OpenGL renderer of octave</strike>.


* Implement a Cairo-based renderer for 2D-only graphics, with support for PS/PDF/SVG output (for printing).
* Implement a Cairo-based renderer for 2D-only graphics, with support for PS/PDF/SVG output (for printing).
Line 312: Line 314:
* On 'imagesc' plots, report the matrix values also based on the mouse position, updating on mouse moving.
* On 'imagesc' plots, report the matrix values also based on the mouse position, updating on mouse moving.


* Add map-creating capabilities similar to the Matlab [https://www.mathworks.com/help/map/functionlist.html Mapping toolbox] for inclusion in the Octave Forge [https://sourceforge.net/p/octave/mapping mapping package].
* Add map-creating capabilities similar to the Matlab [http://www.mathworks.com/help/map/functionlist.html Mapping toolbox] for inclusion in the Octave Forge [https://sourceforge.net/p/octave/mapping mapping package].


* Add data cursor to trace data values in figure.
* Add data cursor to trace data values in figure.
== Lighting ==
<strike>Implement transparency and lighting in OpenGL backend(s). A basic implementation is available in [http://octave.svn.sourceforge.net/viewvc/octave/trunk/octave-forge/extra/jhandles/ JHandles]. This needs to be ported/re-implement/re-engineered/optimized in the C++ OpenGL renderer of Octave.</strike>
== Object selection in OpenGL renderer ==
<strike>This project is about the implementation of a selection method of graphics elements within the OpenGL renderer [http://glprogramming.com/red/chapter13.html]</strike>


== Non-OpenGL renderer ==
== Non-OpenGL renderer ==
Line 326: Line 336:
Text objects in plots (like titles, labels, texts...) in the OpenGL renderer only support plain text and TeX. The latter consists of a very limited subset of the TeX language. On the other hand, the LaTeX formatting support is expected to provide full LaTeX capabilities. There are various approaches that can be used:
Text objects in plots (like titles, labels, texts...) in the OpenGL renderer only support plain text and TeX. The latter consists of a very limited subset of the TeX language. On the other hand, the LaTeX formatting support is expected to provide full LaTeX capabilities. There are various approaches that can be used:
* Use an external LaTeX engine: this is the most straightforward, but it requires users to install a LaTeX distribution and setup Octave to use it.
* Use an external LaTeX engine: this is the most straightforward, but it requires users to install a LaTeX distribution and setup Octave to use it.
* Use an external library that supports LaTeX syntax, e.g. [https://github.com/opencollab/jlatexmath JLaTeXMath] a Java API to display LaTeX code, [https://github.com/nathancarter/qtmathjax qtmathjax] a Qt based library that executes MathJax in a background web page.
* Use an external library that supports LaTeX syntax, e.g. [http://forge.scilab.org/index.php/p/jlatexmath/ JLaTeXMath] a Java API to display LaTeX code, [https://github.com/nathancarter/qtmathjax qtmathjax] a Qt based library that executes MathJax in a background web page.
* Implement our own LaTeX parser and renderer. The matplotlib project [http://matplotlib.sourceforge.net/users/usetex.html has already done this in Python] and might be used as an example of how to do this in Octave. There is also [https://github.com/jkriege2/JKQtPlotter JKQtPlotter], a Qt based plotting application which implements its own LaTeX parser/renderer in C++.
* Implement our own LaTeX parser and renderer. The matplotlib project [http://matplotlib.sourceforge.net/users/usetex.html has already done this in Python] and might be used as an example of how to do this in Octave. There is also [https://github.com/jkriege2/JKQtPlotter JKQtPlotter], a Qt based plotting application which implements its own LaTeX parser/renderer in C++.


Please note that all contributions to Octave may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Octave:Copyrights for details). Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)