Difference between revisions of "Control package"

From Octave
Jump to navigation Jump to search
Line 9: Line 9:
 
! Chapter !! Function !! Implemented !! File !! Status
 
! Chapter !! Function !! Implemented !! File !! Status
 
|-
 
|-
| rowspan="11" | Basic Models || tf || style="background: light-green;" | yes || @tf/tf.m ||  
+
| rowspan="11" | Basic Models || tf || style="background: green;" | yes || @tf/tf.m ||  
 
|-
 
|-
| zpk || yes || zpk.m ||  
+
| zpk || style="background: green;" | yes || zpk.m ||  
 
|-
 
|-
| ss || yes || @ss/ss.m ||  
+
| ss || style="background: green;" | yes || @ss/ss.m ||  
 
|-
 
|-
| frd || yes || @frd/frd.m ||  
+
| frd || style="background: green;" | yes || @frd/frd.m ||  
 
|-
 
|-
| pid || no ||  ||  
+
| pid || style="background: red;" | no ||  ||  
 
|-
 
|-
| pidstd || no ||  ||  
+
| pidstd || style="background: red;" | no ||  ||  
 
|-
 
|-
| pid2 || no ||  ||  
+
| pid2 || style="background: red;" | no ||  ||  
 
|-
 
|-
| dss || yes || @lti/dss.m ||  
+
| dss || style="background: green;" | yes || @lti/dss.m ||  
 
|-
 
|-
| drss || no ||  ||  
+
| drss || style="background: red;" | no ||  ||  
 
|-
 
|-
| filt || yes || filt.m ||  
+
| filt || style="background: green;" | yes || filt.m ||  
 
|-
 
|-
| rss || no ||  ||  
+
| rss || style="background: red;" | no ||  ||  
 
|-
 
|-
 
|}
 
|}

Revision as of 05:40, 23 September 2015

The control package is part of the Octave Forge project.

Function list

Linear System Representation

Chapter Function Implemented File Status
Basic Models tf yes @tf/tf.m
zpk yes zpk.m
ss yes @ss/ss.m
frd yes @frd/frd.m
pid no
pidstd no
pid2 no
dss yes @lti/dss.m
drss no
filt yes filt.m
rss no

Model Interconnection

Model Transformation

Linear Analysis

Control Design

Matrix Computations

Some very basic examples

PT1/low-pass filter step response

Code: Creating a transfer function and plotting its response
 T1=0.4;               # time constant
 P=tf([1], [T1 1])     # create transfer function model
 step(P,2)             # plot step response

 #add some common markers like the tangent line at the origin, which crosses lim(n->inf) f(t) at t=T1
 hold on
 plot ([0 T1],  [0 1],"g")
 plot ([T1 T1],  [0 1],"k")
 plot ([0 T1],  [1-1/e 1-1/e],"m")
 hold off

Pt1.png

Try also bode(P)! (a first order low-pass filter has -3db magnitude at f=1/T1)