Open main menu

Package for solving Diffusion Advection Reaction (DAR) Partial Differential Equations based on the Finite Volume Scharfetter-Gummel (FVSG) method a.k.a Box Integration Method (BIM).

Contents

Tutorials

2D Diffusion Advection Reaction example

This is a short example on how to use bim to solve a 2D Diffusion Advection Reaction problem. The coplete code for this example can is on Agora at this link.

We want to solve the equation

 

 

with mixed Dirichlet / Neumann boundary conditions

 

 

Create the mesh and precompute the mesh properties

To define the geometry of the domain we can use gmsh.

the following gmsh input

Point (1)  = {0, 0, 0, 0.1};
Point (2)  = {1, 1, 0, 0.1};
Point (3)  = {1, 0.9, 0, 0.1};
Point (4)  = {0, 0.1, 0, 0.1};
Point (5) = {0.3,0.1,-0,0.1};
Point (6) = {0.4,0.4,-0,0.1};
Point (7) = {0.5,0.6,0,0.1};
Point (8) = {0.6,0.9,0,0.1};
Point (9) = {0.8,0.8,0,0.1};
Point (10) = {0.2,0.2,-0,0.1};
Point (11) = {0.3,0.5,0,0.1};
Point (12) = {0.4,0.7,0,0.1};
Point (13) = {0.5,1,0,0.1};
Point (14) = {0.8,0.9,0,0.1};

Line (1)  = {3, 2};
Line (2) = {4, 1};

CatmullRom(3) = {1,5,6,7,8,9,3};
CatmullRom(4) = {4,10,11,12,13,14,2};
Line Loop(15) = {3,1,-4,2};
Plane Surface(16) = {15};

will produce the geometry below

 

we need to load the mesh into Octave and precompute mesh properties check out the tutorial for the msh package for info on the mesh structure

Code: Meshing the 2D problem
[mesh] = msh2m_gmsh ("fiume","scale",1,"clscale",.1);
[mesh] = bim2c_mesh_properties (mesh);

to see the mesh you can use functions from the fpl package

Code: Plot mesh in the 2D problem
pdemesh (mesh.p, mesh.e, mesh.t)
view (2)

 


Set the coefficients for the problem:

Get the node coordinates from the mesh structure

Code: Get mesh coordinates in the 2D problem
xu     = mesh.p(1,:).';
yu     = mesh.p(2,:).';


Get the number of elements and nodes in the mesh

Code: Get number of elements in the 2D problem
nelems = columns (mesh.t);
nnodes = columns (mesh.p);
epsilon = .1;
phi     = xu + yu;

Construct the discretized operators

Code: Discretized operators for the 2D problem
 
AdvDiff = bim2a_advection_diffusion (mesh, epsilon, 1, 1, phi);
Mass    = bim2a_reaction (mesh, 1, 1);
b       = bim2a_rhs (mesh,f,g);
A       = AdvDiff + Mass;

To Apply Boundary Conditions, partition LHS and RHS

The tags of the sides are assigned by gmsh we let   be composed by sides 1 and 2 and   be the rest of the boundary

Code: Boundary conditions for the 2D problem
 
GammaD = bim2c_unknowns_on_side (mesh, [1 2]); 	    ## DIRICHLET NODES LIST
GammaN = bim2c_unknowns_on_side (mesh, [3 4]); 	    ## NEUMANN NODES LIST
GammaN = setdiff (GammaN, GammaD);

jn    = zeros (length (GammaN),1);           	    ## PRESCRIBED NEUMANN FLUXES
ud    = 3*xu;                                       ## DIRICHLET DATUM
Omega = setdiff (1:nnodes, union (GammaD, GammaN)); ## INTERIOR NODES LIST

Add = A(GammaD, GammaD);
Adn = A(GammaD, GammaN); ## shoud be all zeros hopefully!!
Adi = A(GammaD, Omega); 

And = A(GammaN, GammaD); ## shoud be all zeros hopefully!!
Ann = A(GammaN, GammaN);
Ani = A(GammaN, Omega); 

Aid = A(Omega, GammaD);
Ain = A(Omega, GammaN); 
Aii = A(Omega, Omega); 

bd = b(GammaD);
bn = b(GammaN); 
bi = b(Omega);


Solve for the displacements

Code: Displacement in the 2D problem
 
temp = [Ann Ani ; Ain Aii ] \ [ jn+bn-And*ud(GammaD) ; bi-Aid*ud(GammaD)];
u = ud;
u(GammaN)  = temp(1:numel (GammaN));
u(Omega)   = temp(length(GammaN)+1:end);

Compute the fluxes through Dirichlet sides

Code: Fluxes at sides in the 2D problem
 
jd = [Add Adi Adn] * u([GammaD; Omega; GammaN]) - bd;


Compute the gradient of the solution

Code: Gradient of solution in the 2D problem
 
[gx, gy] = bim2c_pde_gradient (mesh, u);

Compute the internal Advection-Diffusion flux

[jxglob, jyglob] = bim2c_global_flux (mesh, u, epsilon*ones(nelems, 1), ones(nnodes, 1), ones(nnodes, 1), phi);

Export data to VTK format

The resut can be exported to vtk format to visualize with [[1]] or [[2]]

fpl_vtk_write_field ("vtkdata", mesh, {u, "Solution"}, {[gx; gy]', "Gradient"}, 1);

you can also plot your data directly in Octave using pdesurf

pdesurf (mesh.p, mesh.t, u)

it will look like this

 

3D Time dependent problem

Here is an example of a 3D time-dependent Advection-Diffusion equation that uses lsode for time-stepping.

The equation being solved is

 

 

 

The initial condition is

 

Code: Define the 3D problem
 
pkg load bim

x = linspace (0, 1, 40);
y = z = linspace (0, 1, 20);
msh = bim3c_mesh_properties (msh3m_structured_mesh (x, y, z, 1, 1:6));
nn = columns (msh.p);
ne = columns (msh.t);

x = msh.p(1, :).';
y = msh.p(2, :).';
z = msh.p(3, :).';

x0 = .2; sx = .1;
y0 = .2; sy = .1;
z0 = .8; sz = .1;
 
u = exp (- ((x-x0)/(2*sx)) .^2 - ((y-y0)/(2*sy)) .^2 - ((z-z0)/(2*sz)) .^2);

A = bim3a_advection_diffusion (msh, .01*ones(ne, 1), 100*(x+y-z));
M = bim3a_reaction (msh, 1, 1);

function du = f (u, t, A, M)
  du = - M \ (A * u);
endfunction 

time = linspace (0, 1, 30);
lsode_options ("integration method", "adams");
U = lsode (@(u, t) f(u, t, A, M), u, time);

for ii = 1:1:numel (time)
  name = sprintf ("u_%3.3d", ii);
  delete ([name ".vtu"]);
  fpl_vtk_write_field (name, msh, {U(ii,:)', 'u'}, {}, 1);
endfor

This is a video showing the .3 isosurface of the solution.

External links