Bim package: Difference between revisions

Jump to navigation Jump to search
718 bytes added ,  14 June 2019
m
Unified layout. Links https.
m (Unified layout. Links https.)
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
Package for solving Diffusion Advection Reaction (DAR) Partial Differential Equations based on the Finite Volume Scharfetter-Gummel (FVSG) method a.k.a Box Integration Method (BIM).
The {{Forge|bim}} package is part of the [[Octave Forge]] project.  It is a package for solving Diffusion Advection Reaction (DAR) Partial Differential Equations based on the Finite Volume Scharfetter-Gummel (FVSG) method a.k.a Box Integration Method (BIM).


== Tutorials ==
== Tutorials ==
Line 242: Line 242:


== External links ==
== External links ==
* [http://octave.sourceforge.net/bim/index.html BIM package at Octave Forge].


[[Category:Octave-Forge]]
* [https://octave.sourceforge.io/bim/index.html BIM package at Octave Forge].
 
 


== Scientific papers using BIM ==
== Scientific papers using BIM ==
Line 269: Line 270:


* [http://dx.doi.org/10.1063/1.4709483 Ciucci, F., de Falco, C., Guzman, M.I., Lee, S. and Honda, T., 2012. Chemisorption on semiconductors: The role of quantum corrections on the space charge regions in multiple dimensions. Applied Physics Letters, 100(18), p.183106.]
* [http://dx.doi.org/10.1063/1.4709483 Ciucci, F., de Falco, C., Guzman, M.I., Lee, S. and Honda, T., 2012. Chemisorption on semiconductors: The role of quantum corrections on the space charge regions in multiple dimensions. Applied Physics Letters, 100(18), p.183106.]
* [https://link.springer.com/chapter/10.1007%2F978-3-642-12294-1_36 Culpo, M., de Falco, C., Denk, G. and Voigtmann, S., 2010. Automatic thermal network extraction and multiscale electro-thermal simulation. In Scientific Computing in Electrical Engineering SCEE 2008 (pp. 281-288). Springer Berlin Heidelberg.]
* [https://link.springer.com/chapter/10.1007/978-3-642-12110-4_33 Culpo, M., de Falco, C. and O’Riordan, E., 2010. Patches of finite elements for singularly-perturbed diffusion reaction equations with discontinuous coefficients. In Progress in Industrial Mathematics at ECMI 2008 (pp. 235-240). Springer Berlin Heidelberg.]
[[Category:Octave Forge]]

Navigation menu