Fem-fenics

From Octave
Revision as of 15:02, 8 September 2013 by Gedeone (talk | contribs)
Jump to navigation Jump to search

Package for solving Partial Differential Equations based on Fenics.

Tutorials

Poisson Equation

Here is a first example for the solution of the Poisson equation. The equation being solved is

Code: Define Poisson problem with fem-fenics
 
pkg load fem-fenics msh
import_ufl_Problem ('Poisson')

# Create mesh and define function space
x = y = linspace (0, 1, 33);
mesh = Mesh(msh2m_structured_mesh (x, y, 1, 1:4));

# File Poisson.ufl
# element = FiniteElement("Lagrange", triangle, 1)
V = FunctionSpace('Poisson', mesh);





# Define boundary condition

bc = DirichletBC(V, @(x, y) 0.0, [2;4]);

# Define variational problem
# File Poisson.ufl
# u = TrialFunction(element)
# v = TestFunction(element)
# f = Coefficient(element)
# g = Coefficient(element)

f = Expression ('f', 
                 @(x,y) 10*exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02));
g = Expression ('g', @(x,y) sin (5.0 * x));

# File Poisson.ufl
# a = inner(grad(u), grad(v))*dx
# L = f*v*dx + g*v*ds

a = BilinearForm ('Poisson', V);
L = LinearForm ('Poisson', V, f, g);

# Compute solution

[A, b] = assemble_system (a, L, bc);
sol = A \ b;
u = Function ('u', V, sol);

# Save solution in VTK format

save (u, 'poisson')

# Plot solution
plot (u);
Code: Define Poisson problem with fenics python
 
from dolfin import *


# Create mesh and define function space

mesh = UnitSquareMesh(32, 32)



V = FunctionSpace(mesh, "Lagrange", 1)

# Define Dirichlet boundary (x = 0 or x = 1)
def boundary(x):
    return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS

# Define boundary condition
u0 = Constant(0.0)
bc = DirichletBC(V, u0, boundary)

# Define variational problem

u = TrialFunction(V)
v = TestFunction(V)



f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)")

g = Expression("sin(5*x[0])")





a = inner(grad(u), grad(v))*dx
L = f*v*dx + g*v*ds

# Compute solution
u = Function(V)
(A, b) = assemble_system (a, L, bc);
solve(A, u.vector(), b, "gmres", "default")


# Save solution in VTK format
file = File("poisson.pvd")
file << u

# Plot solution
plot(u, interactive=True)


Mixed Formulation for Poisson Equation

Code: Define MixedPoisson problem with fem-fenics
 
pkg load fem-fenics msh
import_ufl_Problem ('MixedPoisson')

# Create mesh
x = y = linspace (0, 1, 33);
mesh = Mesh(msh2m_structured_mesh (x, y, 1, 1:4));

# File MixedPoisson.ufl
#  BDM = FiniteElement("BDM", triangle, 1)
#  DG  = FiniteElement("DG", triangle, 0)
#  W = BDM * DG
V = FunctionSpace('MixedPoisson', mesh);

# Define trial and test function
# File MixedPoisson.ufl
#  (sigma, u) = TrialFunctions(W)
#  (tau, v)   = TestFunctions(W)
#  CG = FiniteElement("CG", triangle, 1)
#  f = Coefficient(CG)
f = Expression ('f', 
                 @(x,y) 10*exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02));

# Define variational form
# File MixedPoisson.ufl
#  a = (dot(sigma, tau) + div(tau)*u + div(sigma)*v)*dx
#  L = - f*v*dx
a = BilinearForm ('MixedPoisson', V);
L = LinearForm ('MixedPoisson', V, f);
















# Define essential boundary


bc1 = DirichletBC (SubSpace (V, 1), @(x,y) [0; -sin(5.0*x)], 1);
bc2 = DirichletBC (SubSpace (V, 1), @(x,y) [0;  sin(5.0*x)], 3);

# Compute solution
[A, b] = assemble_system (a, L, bc1, bc2);
sol = A \ b;
func = Function ('func', V, sol);

sigma = Function ('sigma', func, 1);
u = Function ('u', func, 2);

# Plot solution
plot (sigma);
plot (u);
Code: Define MixedPoisson problem with fenics python
 
from dolfin import *


# Create mesh
mesh = UnitSquareMesh(32, 32)

# Define function spaces and mixed (product) space
BDM = FunctionSpace(mesh, "BDM", 1)
DG = FunctionSpace(mesh, "DG", 0)
W = BDM * DG



# Define trial and test functions
(sigma, u) = TrialFunctions(W)
(tau, v) = TestFunctions(W)



f = Expression
    ("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)")

# Define variational form

a = (dot(sigma, tau) + div(tau)*u + div(sigma)*v)*dx
L = - f*v*dx



# Define function G such that G \cdot n = g
class BoundarySource(Expression):
    def __init__(self, mesh):
        self.mesh = mesh
    def eval_cell(self, values, x, ufc_cell):
        cell = Cell(self.mesh, ufc_cell.index)
        n = cell.normal(ufc_cell.local_facet)
        g = sin(5*x[0])
        values[0] = g*n[0]
        values[1] = g*n[1]
    def value_shape(self):
        return (2,)

G = BoundarySource(mesh)

# Define essential boundary
def boundary(x):
    return x[1] < DOLFIN_EPS or x[1] > 1.0 - DOLFIN_EPS

bc = DirichletBC(W.sub(0), G, boundary)

# Compute solution
w = Function(W)
solve(a == L, w, bc)


(sigma, u) = w.split()


# Plot sigma and u
plot(sigma)
plot(u)
interactive()

Hyperelasticity

This time we compare the code with the c++ version of DOLFIN.

Code: HyperElasticity Problem: the ufl file
 
# Function spaces
element = VectorElement("Lagrange", tetrahedron, 1)

# Trial and test functions
du = TrialFunction(element)     # Incremental displacement
v  = TestFunction(element)      # Test function

# Functions
u = Coefficient(element)        # Displacement from previous iteration
B = Coefficient(element)        # Body force per unit volume
T = Coefficient(element)        # Traction force on the boundary

# Kinematics
I = Identity(element.cell().d)  # Identity tensor
F = I + grad(u)                 # Deformation gradient
C = F.T*F                       # Right Cauchy-Green tensor

# Invariants of deformation tensors
Ic = tr(C)
J  = det(F)

# Elasticity parameters
mu    = Constant(tetrahedron)
lmbda = Constant(tetrahedron)

# Stored strain energy density (compressible neo-Hookean model)
psi = (mu/2)*(Ic - 3) - mu*ln(J) + (lmbda/2)*(ln(J))**2

# Total potential energy
Pi = psi*dx - inner(B, u)*dx - inner(T, u)*ds

# First variation of Pi (directional derivative about u in the direction of v)
F = derivative(Pi, u, v)

# Compute Jacobian of F
J = derivative(F, u, du)


Code: Define HyperElasticity problem with fem-fenics
 
pkg load fem-fenics msh
problem = 'HyperElasticity';
import_ufl_Problem (problem);


























































Rotation = @(x,y,z) ...
 [0; ...
 0.5*(0.5 + (y - 0.5)*cos(pi/3) - (z-0.5)*sin(pi/3) - y);...
 0.5*(0.5 + (y - 0.5)*sin(pi/3) + (z-0.5)*cos(pi/3) - z)];






#Create mesh and define function space
x = y = z = linspace (0, 1, 17);
mshd = Mesh (msh3m_structured_mesh (x, y, z, 1, 1:6));
V  = FunctionSpace (problem, mshd);








# Create Dirichlet boundary conditions
bcl = DirichletBC (V, @(x,y,z) [0; 0; 0], 1);
bcr = DirichletBC (V, Rotation, 2);
bcs = {bcl, bcr};


# Define source and boundary traction functions
B = Constant ('B', [0.0; -0.5; 0.0]);
T = Constant ('T', [0.1; 0.0; 0.0]);




# Set material parameters
E = 10.0;
nu = 0.3;
mu = Constant ('mu', E./(2*(1+nu)));
lmbda = Constant ('lmbda', E*nu./((1+nu)*(1-2*nu)));
u = Expression ('u', @(x,y,z) [0; 0; 0]);

# Create (linear) form defining (nonlinear) variational problem
L = ResidualForm (problem, V, mu, lmbda, B, T, u);






# Solve nonlinear variational problem F(u; v) = 0
u0 = assemble (L, bcs{:});
# Create function for the resolution of the NL problem
#  function [y, jac] = f (problem, xx, V, bc1, bc2, B, T, mu, lmbda)
#    u = Function ('u', V, xx);
#    a = JacobianForm (problem, V, mu, lmbda, u);
#    L = ResidualForm (problem, V, mu, lmbda, B, T, u);
#    if (nargout == 1)
#      [y, xx] = assemble (L, xx, bc1, bc2);
#    elseif (nargout == 2)
#      [jac, y, xx] = assemble_system (a, L, xx, bc1, bc2);
#    endif
#  endfunction
fs = @(xx) f (problem, xx, V, bcl, bcr, B, T, mu, lmbda);
[x, fval, info] = fsolve (fs, u0, optimset ("jacobian", "on"));
func = Function ('u', V, x);

# Save solution in VTK format
save (func, 'displacement');


# Plot solution
plot (func);
Code: Define HyperElasticity problem with fenics c++
 
#include <dolfin.h>
#include "HyperElasticity.h"

using namespace dolfin;

// Sub domain for clamp at left end
class Left : public SubDomain
{
  bool inside(const Array<double>& x, bool on_boundary) const
  {
    return (std::abs(x[0]) < DOLFIN_EPS) && on_boundary;
  }
};

// Sub domain for rotation at right end
class Right : public SubDomain
{
  bool inside(const Array<double>& x, bool on_boundary) const
  {
    return (std::abs(x[0] - 1.0) < DOLFIN_EPS) && on_boundary;
  }
};

// Dirichlet boundary condition for clamp at left end
class Clamp : public Expression
{
public:

  Clamp() : Expression(3) {}

  void eval(Array<double>& values, const Array<double>& x) const
  {
    values[0] = 0.0;
    values[1] = 0.0;
    values[2] = 0.0;
  }

};

// Dirichlet boundary condition for rotation at right end
class Rotation : public Expression
{
public:

  Rotation() : Expression(3) {}

  void eval(Array<double>& values, const Array<double>& x) const
  {
    const double scale = 0.5;

    // Center of rotation
    const double y0 = 0.5;
    const double z0 = 0.5;

    // Large angle of rotation (60 degrees)
    double theta = 1.04719755;

    // New coordinates
    double y = y0 + (x[1] - y0)*cos(theta) - (x[2] - z0)*sin(theta);
    double z = z0 + (x[1] - y0)*sin(theta) + (x[2] - z0)*cos(theta);

    // Rotate at right end
    values[0] = 0.0;
    values[1] = scale*(y - x[1]);
    values[2] = scale*(z - x[2]);
  }

};

int main()
{
  // Create mesh and define function space
  UnitCubeMesh mesh (16, 16, 16);
  HyperElasticity::FunctionSpace V(mesh);

  // Define Dirichlet boundaries
  Left left;
  Right right;

  // Define Dirichlet boundary functions
  Clamp c;
  Rotation r;

  // Create Dirichlet boundary conditions
  DirichletBC bcl(V, c, left);
  DirichletBC bcr(V, r, right);
  std::vector<const BoundaryCondition*> bcs;
  bcs.push_back(&bcl); bcs.push_back(&bcr);

  // Define source and boundary traction functions
  Constant B(0.0, -0.5, 0.0);
  Constant T(0.1,  0.0, 0.0);

  // Define solution function
  Function u(V);

  // Set material parameters
  const double E  = 10.0;
  const double nu = 0.3;
  Constant mu(E/(2*(1 + nu)));
  Constant lambda(E*nu/((1 + nu)*(1 - 2*nu)));


  // Create (linear) form defining (nonlinear) variational problem
  HyperElasticity::ResidualForm F(V);
  F.mu = mu; F.lmbda = lambda; F.B = B; F.T = T; F.u = u;

  // Create jacobian dF = F' (for use in nonlinear solver).
  HyperElasticity::JacobianForm J(V, V);
  J.mu = mu; J.lmbda = lambda; J.u = u;

  // Solve nonlinear variational problem F(u; v) = 0
  solve(F == 0, u, bcs, J);















  // Save solution in VTK format
  File file("displacement.pvd");
  file << u;

  // Plot solution
  plot(u);
  interactive();

  return 0;
}