TISEAN package: Difference between revisions

From Octave
Jump to navigation Jump to search
Line 140: Line 140:
</syntaxhighlight>}}
</syntaxhighlight>}}
[[File:lyap_k.png|400px|center]]
[[File:lyap_k.png|400px|center]]
=== Dimensions and entropies ===
This function uses a method to determine the minimum sufficient embedding dimension. It is based on the [http://www.mpipks-dresden.mpg.de/~tisean/Tisean_3.0.1/docs/chaospaper/node9.html#SECTION00032200000000000000 False Nearest Neighbors] section of the TISEAN documentation. As a demonstration we will create a plot that contains an Ikeda Map, a Henon Map and a Henon Map corrupted by 10% of Gaussian noise.
{{Code|Analyzing false nearest neighbors|<syntaxhighlight lang="octave" style="font-size:13px">
# Create maps
ikd      = ikeda (10000);
hen      = henon (10000);
hen_noisy = hen + std (hen) * 0.02 .* (-6 + sum (rand ([size(hen), 12]), 3));
# Create and plot false nearest neighbors
[dim_ikd, frac_ikd] = false_nearest (ikd(:,1));
[dim_hen, frac_hen] = false_nearest (hen(:,1));
[dim_hen_noisy, frac_hen_noisy] = false_nearest (hen_noisy(:,1));
plot (dim_ikd, frac_ikd, '-b*;Ikeda;',...
      dim_hen, frac_hen, '-r+;Henon;',...
      dim_hen_noisy, frac_hen_noisy, '-gx;Henon Noisy;');
</syntaxhighlight>}}
The {{Codeline|dim_*}} variables hold the dimension (so here 1:5), and {{Codeline|frac_*}} contain the fraction of false nearest neighbors. From this chart we can obtain the sufficient embedding dimension for each system. For a Henon Map {{Codeline|m &#61; 2}} is sufficient, but for an Ikeda map it is better to use {{Codeline|m &#61; 3}}.
[[File:tisean_false_neigh.png|400px|center]]





Revision as of 20:39, 6 July 2015

Porting TISEAN

This section will focus on demonstrating the capabilities of the TISEAN package. The previous information about the porting procedure has been moved here.

Current ideas and future plans are available on a board loacated here

Tutorials

These tutorials are based on examples, tutorials and the articles located on the TISEAN website:
http://www.mpipks-dresden.mpg.de/~tisean/Tisean_3.0.1/.
This tutorial will utilize the following dataset:

Please download it as the tutorial will reference it.

False Nearest Neighbors

This function uses a method to determine the minimum sufficient embedding dimension. It is based on the False Nearest Neighbors section of the TISEAN documentation. As a demonstration we will create a plot that contains an Ikeda Map, a Henon Map and a Henon Map corrupted by 10% of Gaussian noise.

Code: Analyzing false nearest neighbors
# Create maps
ikd       = ikeda (10000);
hen       = henon (10000);
hen_noisy = hen + std (hen) * 0.02 .* (-6 + sum (rand ([size(hen), 12]), 3));
# Create and plot false nearest neighbors
[dim_ikd, frac_ikd] = false_nearest (ikd(:,1));
[dim_hen, frac_hen] = false_nearest (hen(:,1));
[dim_hen_noisy, frac_hen_noisy] = false_nearest (hen_noisy(:,1));
plot (dim_ikd, frac_ikd, '-b*;Ikeda;',...
      dim_hen, frac_hen, '-r+;Henon;',...
      dim_hen_noisy, frac_hen_noisy, '-gx;Henon Noisy;');

The dim_* variables hold the dimension (so here 1:5), and frac_* contain the fraction of false nearest neighbors. From this chart we can obtain the sufficient embedding dimension for each system. For a Henon Map m = 2 is sufficient, but for an Ikeda map it is better to use m = 3.

Tisean false neigh.png

Finding Unstable Periodic Orbits

Here I will demonstrate how to find unstable periodic orbits. This section is based on the TISEAN documentation chapter Finding unstable periodic orbits. We will start by finding these orbits using function upo.

Code: Finding unstable periodic orbits
# Create maps
hen             = henon (1000);
hen             = hen + std (hen) * 0.02 .* (-6 + sum (rand ([size(hen), 12]), 3));
# Find orbits
[lengths, data] = upo(hen(:,1), 2, 'p',6,'v',0.1, 'n', 100);

The vector lengths contains the size of each of the found orbits and data contains their coordinates. To obtain delay coordinates and plot these orbits onto the original data we will use upoembed.

Code: Plotting unstable periodic orbits
# Create delay coordinates for the orbits and data
up        = upoembed (lengths, data, 1);
delay_hen = delay (hen(:,1));
# Plot all of the data
plot (delay_hen(:,1), delay_hen(:,2), 'r.;Noisy Henon;','markersize',2,...
      up{4}(:,1), up{4}(:,2),'gx;Fixed Point;','markersize',20,'linewidth',1, ...
      up{3}(:,1), up{3}(:,2),'b+;Period 2;','markersize',20,'linewidth',1, ...
      up{2}(:,1), up{2}(:,2),'ms;Period 6;','markersize',20,'linewidth',1, ...
      up{1}(:,1), up{1}(:,2),'cs;Period 6;','markersize',20,'linewidth',1);
Upo.png

The plotting options are passed to make the orbits more visible.

Nonlinear Prediction

In this section we will demonstrate some functions from the 'Nonlinear Prediction' chapter of the TISEAN documentation (located here). For now this section will only demonstrate functions that are connected to the Simple Nonlinear Prediction section.
There are three functions in this section: lzo_test, lzo_gm and lzo_run. The first is used to estimate the forecast error for a set of chosen parameters, the second gives some global information about the fit and the third produces predicted points. Let us start with the first one (before starting this example remember to download 'amplitude.dat' from above and start Octave in the directory that contains it). The pairs of parameters (m,d) where chosen after the TISEAN documentation.

Code: Analyzing forecast errors for various parameters
# Load data
load amplitude.dat
# Create different forecast error results
steps = 200;
res1  = lzo_test (amplitude(1:end-200), 'm', 2, 'd', 6, 's', steps);
res2  = lzo_test (amplitude(1:end-200), 'm', 3, 'd', 6, 's', steps);
res3  = lzo_test (amplitude(1:end-200), 'm', 4, 'd', 1, 's', steps);
res4  = lzo_test (amplitude(1:end-200), 'm', 4, 'd', 6, 's', steps);
plot (res1(:,1), res1(:,2), 'r;m = 2, d = 6;', ...
      res2(:,1), res2(:,2), 'g;m = 3, d = 6;',...
      res3(:,1), res3(:,2), 'b;m = 4, d = 1;',...
      res4(:,1), res4(:,2), 'm;m = 4, d = 6;');
Tisean nl prediction.png

It seems that the last pair (m = 4, d = 6) is suitable. We will use it to determine the the best neighborhood to use when generating future points.

Code: Determining the best neighborhood size using lzo_gm
gm = lzo_gm (amplitude(1:end-200), 'm', 4, 'd', 6, 's', steps, 'rhigh', 20);

After analyzing gm it is easy to observe that the least error is for the first neighborhood size of gm which is equal to 0.49148. We will use it to produce the prediction vectors. Only the first 4800 datapoints from amplitude are used in order to compare the predicted values with the actual ones for the last 200 points.

Code: Creating forecast points
steps          = 200;
forecast       = lzo_run (amplitude(1:end-200), 'm', 4, 'd', 6, 'r', 0.49148, 'l', steps);
forecast_noisy = lzo_run (amplitude(1:end-200), 'm', 4, 'd', 6, 'r', 0.49148,  ...
                          'dnoise', 10, 'l', steps);
plot (amplitude(end-199:end), 'g;Actual Data;', ...
      forecast, 'r.;Forecast Data;',...
      forecast_noisy, 'bo;Forecast Data with 10% Dynamic Noise;');
Tisean nl prediction 2.png

The difference between finding the proper r and not finding it can be very small.
The produced data is the best local zeroth order fit on the amplitude.dat for (m = 4, d = 6).

Nonlinear Noise Reduction

This tutorial show different methods of the 'Nonlinear Noise Reduction' section of the TISEAN documentation (located here). It shows the use of simple nonlinear noise reduction (function lazy) and locally projective nonlinear noise reduction (function ghkss). To start let's create noisy data to work with.

Code: Creating a noisy henon map
hen       = henon (10000);
hen       = hen(:,1); # We only need the first column
hen_noisy = hen + std (hen) * 0.02 .* (-6 + sum (rand ([size(hen), 12]), 3));

This created a Henon map contaminated by 2% Gaussian noise à la TISEAN. In the tutorials and exercises on the TISEAN website this would be equivalent to calling makenoise -%2 on the Henon map.
Next we will reduce the noise using simple nonlinear noise reduction lazy.

Code: Simple nonlinear noise reduction
clean       = lazy (hen_noisy,7,-0.06,3);
# Create delay vectors for both the clean and noisy data
delay_clean = delay (clean);
delay_noisy = delay (hen_noisy);
# Plot both on one chart
plot (delay_noisy(:,1), delay_noisy(:,2), 'b.;Noisy Data;','markersize',3,...
      delay_clean(:,1), delay_clean(:,2), 'r.;Clean Data;','markersize',3)
Tisean nl noisereduction.png

On the chart created the red dots represent cleaned up data. It is much closer to the original than the noisy blue set.
Now we will do the same with ghkss.

Code: Locally projective nonlinear noise reduction
clean       = ghkss (hen,'m',7,'q',2,'r',0.05,'k',20,'i',2);

The rest of the code is the same as the code used in the lazy example.
Once both results are compared it is quite obvious that for this particular example ghkss is superior to lazy. The TISEAN documentation points out that this is not always the case.

Tisean nl noisereduction 2.png

Lyapunov Exponents

Here I will demonstrate how to use the function lyap_k. It creates Lyapunov Exponents for a time series (more information available from the TISEAN documentation located here). In this tutorial we will create a Lyapunov Exponent for various embedding dimensions and then plot them.

Code: Creating Lyapunov exponents
# Create time series
in       = sin((1:2500).'./360) + cos((1:2500).'./180);
# Create Lyapunov exponents
mmax_val = 20
lyap_exp = lyap_k (in, 'mmin',2,'mmax',mmax_val,'d',6,'s',400,'t',500);

In this function the output (lyap_exp is a 5 x 20 struct array. We will only use one row for the plot.

Code: Plotting Lyapunov exponents
cla reset
hold on
for j=2:mmax_val
  plot (lyap_exp(1,j-1).exp(:,1),lyap_exp(1,j-1).exp(:,2),'r');
endfor
xlabel ("t [flow samples]");
ylabel ("S(eps, embed, t)");
hold off
Lyap k.png

Dimensions and entropies

This function uses a method to determine the minimum sufficient embedding dimension. It is based on the False Nearest Neighbors section of the TISEAN documentation. As a demonstration we will create a plot that contains an Ikeda Map, a Henon Map and a Henon Map corrupted by 10% of Gaussian noise.

Code: Analyzing false nearest neighbors
# Create maps
ikd       = ikeda (10000);
hen       = henon (10000);
hen_noisy = hen + std (hen) * 0.02 .* (-6 + sum (rand ([size(hen), 12]), 3));
# Create and plot false nearest neighbors
[dim_ikd, frac_ikd] = false_nearest (ikd(:,1));
[dim_hen, frac_hen] = false_nearest (hen(:,1));
[dim_hen_noisy, frac_hen_noisy] = false_nearest (hen_noisy(:,1));
plot (dim_ikd, frac_ikd, '-b*;Ikeda;',...
      dim_hen, frac_hen, '-r+;Henon;',...
      dim_hen_noisy, frac_hen_noisy, '-gx;Henon Noisy;');

The dim_* variables hold the dimension (so here 1:5), and frac_* contain the fraction of false nearest neighbors. From this chart we can obtain the sufficient embedding dimension for each system. For a Henon Map m = 2 is sufficient, but for an Ikeda map it is better to use m = 3.

Tisean false neigh.png

External links