Bim package: Difference between revisions
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
We want to solve the equation | We want to solve the equation | ||
<math> -\mathrm{div}\ ( \varepsilon\ \nabla u(x, y) - \nabla \varphi(x,y)\ u(x, y) ) ) + u(x, y) = 1 </math> | <math> -\mathrm{div}\ ( \varepsilon\ \nabla u(x, y) - \nabla \varphi(x,y)\ u(x, y) ) ) + u(x, y) = 1 \qquad in \Omega</math> | ||
<math> \varphi(x, y)\ =\ x + y </math> | |||
with mixed Dirichlet / Neumann boundary conditions | |||
<math> | <math> u(x, y) = u_d(x, y)\qquad \mbox{ on } \Gamma_D </math> | ||
<math> -( \varepsilon\ \nabla u(x, y) - \nabla \varphi(x,y)\ u(x, y) ) \cdot \mathbf{n} \qquad \mbox{ on } \Gamma_N</math> | |||
<b> Create the mesh and precompute the mesh properties </b> | <b> Create the mesh and precompute the mesh properties </b> | ||
Line 34: | Line 38: | ||
<b> Construct an initial guess</b> | <b> Construct an initial guess</b> | ||
We need this even if our problem is linear and stationary | |||
as we are going to use the values at boundary nodes to set | |||
Dirichelet boundary conditions. | |||
Get the node coordinates from the mesh structure | |||
<pre> | <pre> | ||
xu = mesh.p(1,:).'; | xu = mesh.p(1,:).'; | ||
yu = mesh.p(2,:).'; | yu = mesh.p(2,:).'; | ||
</pre> | |||
<pre> | |||
uin = 3*xu; | uin = 3*xu; | ||
</pre> | </pre> | ||
Line 46: | Line 56: | ||
<b> Set the coefficients for the problem:</b> | <b> Set the coefficients for the problem:</b> | ||
Get the number of elements and nodes in the mesh | |||
<pre> | |||
nelems = columns(mesh.t); | |||
nnodes = columns(mesh.p); | |||
</pre> | |||
<pre> | <pre> | ||
epsilon = .1; | epsilon = .1; | ||
phi = xu+yu; | |||
</pre> | </pre> | ||
Line 62: | Line 71: | ||
<pre> | <pre> | ||
AdvDiff = bim2a_advection_diffusion(mesh, | AdvDiff = bim2a_advection_diffusion(mesh, epsilon, 1, phi); | ||
Mass = bim2a_reaction(mesh,delta,zeta); | Mass = bim2a_reaction(mesh,delta,zeta); | ||
b = bim2a_rhs(mesh,f,g); | b = bim2a_rhs(mesh,f,g); |
Revision as of 21:19, 19 July 2012
This is a short example on how to use bim to solve a DAR problem.
The data for this example can be found in the doc directory inside the
bim installation directory.
We want to solve the equation
with mixed Dirichlet / Neumann boundary conditions
Create the mesh and precompute the mesh properties
The geometry of the domain was created using gmsh and is stored in the file fiume.geo created with gmsh
[mesh] = msh2m_gmsh("fiume","scale",1,"clscale",.1); [mesh] = bim2c_mesh_properties(mesh);
to see the mesh you can use functions from the [fpl] package
pdemesh (mesh.p, mesh.e, mesh.t) view (2)
Construct an initial guess
We need this even if our problem is linear and stationary as we are going to use the values at boundary nodes to set Dirichelet boundary conditions.
Get the node coordinates from the mesh structure
xu = mesh.p(1,:).'; yu = mesh.p(2,:).';
uin = 3*xu;
Set the coefficients for the problem:
Get the number of elements and nodes in the mesh
nelems = columns(mesh.t); nnodes = columns(mesh.p);
epsilon = .1; phi = xu+yu;
Construct the discretized operators
AdvDiff = bim2a_advection_diffusion(mesh, epsilon, 1, phi); Mass = bim2a_reaction(mesh,delta,zeta); b = bim2a_rhs(mesh,f,g); A = AdvDiff + Mass;
To Apply Boundary Conditions, partition LHS and RHS
The tags of the sides are assigned by gmsh
Dlist = bim2c_unknowns_on_side(mesh, [8 18]); ## DIRICHLET NODES LIST Nlist = bim2c_unknowns_on_side(mesh, [23 24]); ## NEUMANN NODES LIST Nlist = setdiff(Nlist,Dlist); Fn = zeros(length(Nlist),1); ## PRESCRIBED NEUMANN FLUXES Ilist = setdiff(1:length(uin),union(Dlist,Nlist)); ## INTERNAL NODES LIST
Add = A(Dlist,Dlist); Adn = A(Dlist,Nlist); ## shoud be all zeros hopefully!! Adi = A(Dlist,Ilist); And = A(Nlist,Dlist); ## shoud be all zeros hopefully!! Ann = A(Nlist,Nlist); Ani = A(Nlist,Ilist); Aid = A(Ilist,Dlist); Ain = A(Ilist,Nlist); Aii = A(Ilist,Ilist); bd = b(Dlist); bn = b(Nlist); bi = b(Ilist); ud = uin(Dlist); un = uin(Nlist); ui = uin(Ilist);
Solve for the displacements
temp = [Ann Ani ; Ain Aii ] \ [ Fn+bn-And*ud ; bi-Aid*ud]; un = temp(1:length(un)); ui = temp(length(un)+1:end); u(Dlist) = ud; u(Ilist) = ui; u(Nlist) = un;
Compute the fluxes through Dirichlet sides
Fd = Add * ud + Adi * ui + Adn*un - bd;
Compute the gradient of the solution
[gx, gy] = bim2c_pde_gradient(mesh,u);
Compute the internal Advection-Diffusion flux
[jxglob,jyglob] = bim2c_global_flux(mesh,u,alfa,gamma,eta,beta);
Save data for later visualization
fpl_dx_write_field("dxdata",mesh,[gx; gy]',"Gradient",1,2,1); fpl_vtk_write_field ("vtkdata", mesh, {}, {[gx; gy]', "Gradient"}, 1);