Bim package: Difference between revisions

From Octave
Jump to navigation Jump to search
No edit summary
No edit summary
Line 7: Line 7:


<math>  -\mathrm{div}\ ( \varepsilon \nabla u(x, y) - \nabla \varphi(x,y)\ u(x, y) ) ) + u(x, y) = 1 </math>
<math>  -\mathrm{div}\ ( \varepsilon \nabla u(x, y) - \nabla \varphi(x,y)\ u(x, y) ) ) + u(x, y) = 1 </math>
p


<math>  \varphi(x, y) = x + y </math>
<math>  \varphi(x, y) = x + y </math>

Revision as of 16:30, 19 July 2012

This is a short example on how to use bim to solve a DAR problem.
The data for this example can be found in the doc directory inside the bim installation directory.

We want to solve the equation

p


Create the mesh and precompute the mesh properties

The geometry of the domain was created using gmsh and is stored in the file fiume.geo created with gmsh

Fiume.png

[mesh] = msh2m_gmsh("fiume","scale",1,"clscale",.1);
[mesh] = bim2c_mesh_properties(mesh);

to see the mesh you can use functions from the [fpl] package

pdemesh (mesh.p, mesh.e, mesh.t)
view (2)

Fiume msh.png

Construct an initial guess

For a linear problem only the values at boundary nodes are actually relevant

xu     = mesh.p(1,:).';
yu     = mesh.p(2,:).';
nelems = columns(mesh.t);
nnodes = columns(mesh.p);
uin    = 3*xu;

Set the coefficients for the problem:


epsilon = .1;
alfa    = ones(nelems,1);
gamma   = ones(nnodes,1);
eta     = epsilon*ones(nnodes,1);
beta    = xu+yu;
delta   = ones(nelems,1);
zeta    = ones(nnodes,1);
f       = ones(nelems,1);
g       = ones(nnodes,1);

Construct the discretized operators

AdvDiff = bim2a_advection_diffusion(mesh,alfa,gamma,eta,beta);
Mass    = bim2a_reaction(mesh,delta,zeta);
b       = bim2a_rhs(mesh,f,g);
A       = AdvDiff + Mass;

To Apply Boundary Conditions, partition LHS and RHS

The tags of the sides are assigned by gmsh

Dlist = bim2c_unknowns_on_side(mesh, [8 18]); 	   ## DIRICHLET NODES LIST
Nlist = bim2c_unknowns_on_side(mesh, [23 24]); 	   ## NEUMANN NODES LIST
Nlist = setdiff(Nlist,Dlist);
Fn    = zeros(length(Nlist),1);           	   ## PRESCRIBED NEUMANN FLUXES
Ilist = setdiff(1:length(uin),union(Dlist,Nlist)); ## INTERNAL NODES LIST


Add = A(Dlist,Dlist);
Adn = A(Dlist,Nlist); ## shoud be all zeros hopefully!!
Adi = A(Dlist,Ilist); 

And = A(Nlist,Dlist); ## shoud be all zeros hopefully!!
Ann = A(Nlist,Nlist);
Ani = A(Nlist,Ilist); 

Aid = A(Ilist,Dlist);
Ain = A(Ilist,Nlist); 
Aii = A(Ilist,Ilist); 

bd = b(Dlist);
bn = b(Nlist); 
bi = b(Ilist); 

ud = uin(Dlist);
un = uin(Nlist); 
ui = uin(Ilist); 

Solve for the displacements

temp = [Ann Ani ; Ain Aii ] \ [ Fn+bn-And*ud ; bi-Aid*ud];
un   = temp(1:length(un));
ui   = temp(length(un)+1:end);
u(Dlist) = ud;
u(Ilist) = ui;
u(Nlist) = un;

Compute the fluxes through Dirichlet sides

Fd = Add * ud + Adi * ui + Adn*un - bd;


Compute the gradient of the solution

[gx, gy] = bim2c_pde_gradient(mesh,u);

Compute the internal Advection-Diffusion flux

[jxglob,jyglob] = bim2c_global_flux(mesh,u,alfa,gamma,eta,beta);

Save data for later visualization

fpl_dx_write_field("dxdata",mesh,[gx; gy]',"Gradient",1,2,1);
fpl_vtk_write_field ("vtkdata", mesh, {}, {[gx; gy]', "Gradient"}, 1);