Fortran: Difference between revisions
Jump to navigation
Jump to search
m (→C++ function) |
(→Header file: Update.) |
||
Line 53: | Line 53: | ||
=== Header file === | === Header file === | ||
Header file with C interface to {{Path|octave_file_io.cc}}. | |||
{{File|octave_file_io.h|<syntaxhighlight lang="C" style="font-size:13px"> | |||
#ifndef OCTAVE_FILE_IO_H | #ifndef OCTAVE_FILE_IO_H | ||
#define OCTAVE_FILE_IO_H | #define OCTAVE_FILE_IO_H | ||
Line 69: | Line 71: | ||
#endif | #endif | ||
</syntaxhighlight>}} | </syntaxhighlight>}} | ||
=== Fortran Code === | === Fortran Code === |
Revision as of 05:00, 13 July 2020
This page describes an example of how to call liboctave functions from a Fortran program. In the example we will load an Octave array from a file in Octave's native ASCII format, it consists of two steps:
- write a C++ function with a C compatible interface and C linkage that reads a variable from an Octave ASCII file
- write Fortran code using the "iso_c_binding" intrinsic module to call the C++ function
C++ function
C++ function to load a single matrix, stored in ASCII format, from a data file.
File: octave_file_io.cc
// Octave header
#include <octave/oct.h>
#include <octave/ls-mat-ascii.h>
// Custom header containing the C compatible interface
#include <octave_file_io.h>
//! Load a single matrix, stored in ASCII format, from a data file.
//!
//! @param file_name name of the data file.
//! @param data pointer to the read-in matrix stored as fortran vector
//! (column-major order).
//! @param numel number of elements in @p data.
int octave_load (const char* file_name, double** data, int* numel)
{
// Define variable to hold the read data.
octave_value read_data;
// Read a plain ASCII matrix from data file.
std::ifstream in_file_stream (file_name, std::ios::binary);
read_mat_ascii_data (in_file_stream, file_name, read_data);
in_file_stream.close ();
// Convert read data to numerical array (matrix).
NDArray A = read_data.array_value ();
// Extract number of elements in matrix A.
*numel = A.numel ();
// Allocate memory to pointer to returned values.
*data = (double*) malloc (A.numel () * sizeof (double));
// Copy the content of matrix A to data structure Fortran can handle.
memcpy (*data, A.fortran_vec (), A.numel () * sizeof (double));
return 0;
}
Header file
Header file with C interface to octave_file_io.cc.
File: octave_file_io.h
#ifndef OCTAVE_FILE_IO_H
#define OCTAVE_FILE_IO_H
#ifdef __cplusplus
extern "C" {
#endif
int octave_load (const char* filename, const char* varname, double** data, int* numel);
#ifdef __cplusplus
}
#endif
#endif
Fortran Code
Code: octave_file_io_example.f90 |
program octave_file_io_example
use iso_c_binding
implicit none
interface
function octave_load (filename, varname, data, numel) bind(c, name="octave_load")
use iso_c_binding
implicit none
integer(c_int) :: octave_load
character(kind=c_char), intent(in) :: filename(*)
character(kind=c_char), intent(in) :: varname(*)
type(c_ptr), intent(out) :: data
integer(c_int), intent(out) :: numel
end function octave_load
end interface
integer(c_int) :: res
type(c_ptr) :: data
real(c_double), pointer :: fdata(:)
integer(c_int) :: numel
res = octave_load (c_char_'pippo.octxt' // c_null_char, c_char_'A' // c_null_char, data, numel)
call c_f_pointer (data, fdata, (/numel/))
write (*,*) fdata
end program octave_file_io_example
|
Compiling the code
mkoctfile -I. octave_file_io.cc mkoctfile -I. --mkoctfile --link-stand-alone octave_file_io_example.f90 octave_file_io.o -o octave_file_io_example