Summer of Code - Getting Started: Difference between revisions

From Octave
Jump to navigation Jump to search
(→‎Image Analysis: "Improvements to N-dimensional image processing" remove difficult project.)
 
(104 intermediate revisions by 13 users not shown)
Line 1: Line 1:
The following is largely distilled from the [[Projects]] page for the benefit of potential [https://summerofcode.withgoogle.com Google] and [https://socis.esa.int/ ESA] Summer of Code (SoC) students. Although students are welcome to attempt any of the projects in that page or any of their own choosing, here we offer some suggestions on what good student projects might be.
{{Note|GNU Octave is a [https://summerofcode.withgoogle.com/programs/2024/organizations/gnu-octave mentoring organization for GSoC 2024].}}


You can also take a look at last years [[Summer of Code]] projects for inspiration.
Since 2011 the GNU Octave project has successfully mentored:
* [[Summer of Code | '''42 participants''' 🙂]]
* [[Summer of Code | '''44 projects''' 📝]]
in [[Summer of Code]] (SoC) programs by [https://summerofcode.withgoogle.com/ Google] and [https://esa.int/ ESA].


= Steps Toward a Successful Application =
Those SoC programs aim to advertise open-source software development and to attract potential new Octave developers.


==  Help Us Get To Know You ==
= Steps toward a successful application =
* If you aren't communicating with us before the application is due, your application will not be accepted.
*:* '''Join the [https://lists.gnu.org/mailman/listinfo/octave-maintainers maintainers mailing list]''' or read the archives and see what topics we discuss and how the developers interact with each other.
*:* '''Hang out in our [https://webchat.freenode.net/?channels=#octave IRC channel]'''. Ask questions, answer questions from users, show us that you are motivated and well-prepared. There will be more applicants than we can effectively mentor, so do ask for feedback on your public application to increase the strength of your proposal!
* '''Do not wait for us to tell you what to do'''
*: You should be doing something that interests you, and should not need us to tell you what to do.  Similarly, you shouldn't ask us what to do either.
*:* When you email the list and mentors, do not write just to say in what project you're interested. Be specific about your questions and clear on the email subject. For example, do not write an email with the subject "GSoC student interested in the ND images projects".  Such email is likely to be ignored.  Instead, show you are already working on the topic, and email "Problem implementing morphological operators with bitpacked ND images".
*:* It is good to ask advice on how to solve something you can't, but you must show some work done.  Remember, we are mentors and not your boss.  Read [http://www.catb.org/esr/faqs/smart-questions.html How to ask questions the smart way]: <blockquote>''Prepare your question. Think it through. Hasty-sounding questions get hasty answers, or none at all. The more you do to demonstrate that having put thought and effort into solving your problem before seeking help, the more likely you are to actually get help.''</blockquote>
*:* It can be difficult at the beginning to think on something to do.  This is nature of free and open source software development.  You will need to break the mental barrier that prevents you from thinking on what can be done.  Once you do that, you will have no lack of ideas for what to do next.
*:* Use Octave.  Eventually you will come across something that does not work the way you like.  Fix that.  Or you will come across a missing function.  Implement it.  It may be a hard problem (they usually are). While solving that problem, you may find other missing capabilities or smaller bug fixes.  Implement and contribute those to Octave.
*:* Take a look at the [[Short projects]] for something that may be simple to start with.


==  Find Something That Interests You ==
# 😉💬 '''We want to get to know you (before the deadline).  Communicate with us.'''
*: It's '''critical''' that you '''find a project that excites you'''.  You'll be spending most of the summer working on it (we expect you to treat the SoC as a job).
#* Join [https://octave.discourse.group/ '''Octave Discourse'''] or [[IRC]] for general discussion and to ask questions (Please do not use the bug tracker for general GSOC inquiries unrelated to specific bugs found with Octave.) Using a nickname is fine.
*: Don't just tell us how interested you are, show us that you're willing and able to '''contribute''' to Octave. You can do that by [https://savannah.gnu.org/bugs/?group=octave fixing a few bugs] or [https://savannah.gnu.org/patch/?group=octave submitting patches] well before the deadline, in addition to regularly interacting with Octave maintainers and users on the mailing list and IRC. Our experience shows us that successful SoC students demonstrate their interest early and often.
#* Show us that you're motivated to work on Octave 💻.  There is no need to present an overwhelming CV 🏆; evidence of involvement with Octave is more important.
== Prepare Your Proposal With Us ==
#* '''<span style="color:darkblue;">If you never talked to us, we will likely reject your proposal</span>''', even it looks good 🚮
*: By working with us to prepare your proposal, you'll be getting to know us and showing us how you approach problems. The best place for this is your Wiki user page and the [https://webchat.freenode.net/?channels=#octave IRC channel].
# 👩‍🔬 '''Get your hands dirty.'''
==  Complete Your Application ==
#* We are curious about your programming skills 🚀
*: Fill out our '''''public''''' application template.
#** Your application will be much stronger if you [https://savannah.gnu.org/bugs/?group=octave fix Octave bugs] or [https://savannah.gnu.org/patch/?group=octave submit patches] before or during the application period.
*:* This is best done by '''[[Special:CreateAccount|creating an account at this wiki]]''', and copying the '''[[Template:Student_application_template_public|template]]''' from its page.
#** You can take a look at the [[short projects]] for some simple bugs to start with.
*:* You really only need to copy and answer the '''''public''''' part there, there is no need to showcase everything else to everybody reading your user page!
#* '''Use Octave!'''
*: Fill out our '''''private''''' application template.
#** If you come across something that does not work the way you like ➡️ try to fix that 🔧
*:* This is best done by copying the '''[[Template:Student_application_template_private|template]]''' from its page and '''adding the required information to your application at Google (melange)''' or at '''ESA'''.<br>
#** Or if you find a missing function ➡️ try to implement it.
*:* Only the organization admin and the possible mentors will see this dataYou can still edit it after submitting, until the deadline!
# 📝💡 '''Tell us what you are going to do.'''
#* Do not write just to say what project you're interested in. Be specific about what you are going to do, include links 🔗, show us you know what you are talking about 💡, and ask many [http://www.catb.org/esr/faqs/smart-questions.html smart questions] 🤓
#* Remember, '''we are volunteer developers and not your boss''' 🙂
# 📔 '''Prepare your proposal with us.'''
#* Try to show us as early as possible a draft of your proposal 📑
#* If we see your proposal for the first time after the application deadline, it might easily contain some paragraphs not fully clear to usOngoing interaction will give us more confidence that you are capable of working on your project 🙂👍
#* Here’s a sample proposal outline that you can use as a reference when drafting your own application. [https://docs.google.com/document/d/1kGtT9_f0FrXdCKwyKEWwOV6R-AU90bkd/edit?usp=sharing&ouid=115736651221450989198&rtpof=true&sd=true Sample Proposal]
#* Then submit the proposal following the applicable rules, e.g. for [https://google.github.io/gsocguides/student/writing-a-proposal GSoC]. 📨


== Things You'll be Expected to Know or Quickly Learn On Your Own ==
= How do we judge your application? =


Octave is mostly written in C++ and its own scripting language that is mostly compatible with Matlab. There are bits and pieces of Fortran, Perl, C, awk, and Unix shell scripts here and there. In addition to being familiar with C++ and Octave's scripting language, successful applicants will be familiar with or able to quickly learn about Octave's infrastructure. You can't spend the whole summer learning how to build Octave or prepare a changeset and still successfully complete your project.
Depending on the mentors and SoC program there are varieties, but typically the main factors considered would be:


* '''The Build System'''
* '''You have demonstrated interest in Octave and an ability to make substantial modifications to Octave'''
*: [http://en.wikipedia.org/wiki/GNU_build_system The GNU build system] is used to build Octave.
*: The most important thing is that you've contributed some interesting code samples to judge your skills. It's OK during the application period to ask for help on how to format these code samples, which normally are Mercurial patches.
*: While you generally don't need to understand too much unless you actually want to change how Octave is built, you should be able to understand enough to get a general idea of how to build Octave.
*: If you've ever done a {{Codeline|./configure && make && make install}} series of commands, you have already used the GNU build system.
*: '''You must demonstrate that you are able to build the development version of Octave from sources before the application deadline.''' Linux is arguably the easiest system to work on. Instructions:
*:* [[Building]]
*:* [https://octave.org/doc/interpreter/Installation.html Octave Manual on Installing Octave]
* '''The Version Control System'''
*: We use [https://www.mercurial-scm.org/ Mercurial] (abbreviated hg).
*: Mercurial is the [http://en.wikipedia.org/wiki/Distributed_Version_Control_System distributed version control system] (DVCS) we use for managing our source code. You should have some basic understanding of how a DVCS works, but hg is pretty easy to pick up, especially if you already know a VCS like git or svn.
* '''The Procedure for Contributing Changesets'''
*: You will be expected to follow the same procedures as other contributors and core developers.
*: You will be helping current and future Octave developers by using our standard style for changes, commit messages, and so on.  You should also read the same [[Contribution guidelines | contribution]] [https://hg.savannah.gnu.org/hgweb/octave/file/tip/etc/HACKING.md guidelines] we have for everyone.
*: [[Hg_instructions_for_mentors#Mercurial_Tips_for_SoC_students | This page]] describes the procedures students are expected to use to publicly display their progress in a public mercurial repo during their work.
* '''The Maintainers Mailing List'''
*: We primarily use [https://lists.gnu.org/mailman/listinfo/octave-maintainers mailing lists] for communication among developers.
*: The mailing list is used most often for discussions about non-trivial changes to Octave, or for setting the direction of development.
*: You should follow basic mailing list etiquette. For us, this mostly means "do not [https://en.wikipedia.org/wiki/Posting_style#Top-posting top post]".
* '''The IRC Channel'''
*: We also have [http://webchat.freenode.net?channels=octave the #octave IRC channel in Freenode].
*: You should be familiar with the IRC channel.  It's very helpful for new contributors (you) to get immediate feedback on ideas and code.
*: Unless your primary mentor has a strong preference for some other method of communication, the IRC channel might be your primary means of communicating with your mentor and Octave developers.
* '''The Octave Forge Project'''
*: [https://octave.sourceforge.io/ Octave Forge] is a collection of contributed packages that enhance the capabilities of core Octave. They are somewhat analogous to Matlab's toolboxes.
* '''Related Skills'''
*: In addition, you probably should know '''some''' mathematics, engineering, experimental science, or something of the sort.
*: If so, you probably have already been exposed to the kinds of problems that Octave is used for.


== Criteria by which applications are judged ==
* '''You showed understanding of your topic'''
*: Your proposal should make it clear that you're reasonably well versed in the subject area and won't need all summer just to read up on it.


These might vary somewhat depending on the mentors and coordinators for a particular Summer of Code, but typically the main factors considered would be:
* '''Well thought out, adequately detailed, realistic project plan'''
 
*: "I'm good at this, so trust me" isn't enough.  In your proposal, you should describe which algorithms you'll use and how you'll integrate with existing Octave code. You should also prepare a project timeline and goals for the midterm and final evaluations.
* '''Applicant has demonstrated an ability to make substantial modifications to Octave'''
*: The most important thing is that you've contributed some interesting code samples to judge you by. It's OK during the application period to ask for help on how to format these code samples, which normally are Mercurial patches.


* '''Applicant shows understanding of topic'''
= What you should know about Octave =
*: Your application should make it clear that you're reasonably well versed in the subject area and won't need all summer just to read up on it.


* '''Applicant shows understanding of and interest in Octave development'''
GNU Octave is mostly written in C++ and its own scripting language that is mostly compatible with Matlab. There are bits and pieces of Fortran, Perl, C, awk, and Unix shell scripts here and there. In addition to being familiar with C++ and Octave's scripting language, you as successful applicant will be familiar with or able to quickly learn about Octave's infrastructure. You can't spend the whole summer learning how to build Octave or prepare a changeset and still successfully complete your project 😇
*: The best evidence for this is previous contributions and interactions.


* '''Well thought out, adequately detailed, realistic project plan'''
You should know:
*: "I'm good at this, so trust me" isn't enough. You should describe which algorithms you'll use and how you'll integrate with existing Octave code. You should also prepare a full timeline and goals for the midterm and final evaluations.
# How to build Octave from its source code using [http://en.wikipedia.org/wiki/GNU_build_system the GNU build system].
#* Read in this wiki: [[Developer FAQ]], [[Building]]
#* Tools to know: [https://en.wikipedia.org/wiki/GNU_Compiler_Collection gcc], [https://en.wikipedia.org/wiki/Make_(software) make]
# How to submit patches (changesets).
#* Read in this wiki: [[Contribution guidelines]], [[Mercurial]]
#* Tools to know: [https://en.wikipedia.org/wiki/Mercurial Mercurial (hg)], [https://en.wikipedia.org/wiki/Git git]


= Suggested projects =
= Suggested projects =


The following projects are broadly grouped by category and probable skills required to tackle each. Remember to check [[Projects]] for more ideas if none of these suit you, and your own ideas are always welcome. You can also look at our [[Summer of Code|completed past projects]] for more inspiration.
The following suggested projects are distilled from the [[Projects]] page for the benefit of potential SoC participants. You can also look at our [[Summer of Code|completed past projects]], or the current [https://hg.savannah.gnu.org/hgweb/octave/file/tip/etc/ROADMAP.md | Octave Development Roadmap] for more inspiration.


{{Note|These are suggested projects but you are welcome to propose your own projects provided you find an Octave mentor}}
{{Note|Do you use Octave at your working place or university? Do you have some numerical project in mind?  You are always welcome to '''propose your own projects'''.  If you are passionate about your project, it will be easy to find an Octave developer to mentor and guide you. Please note that for such a proposal to be successful it will almost certainly involve initiating pre-proposal discussion over at the [https://octave.discourse.group Octave Discourse forum].}}


== Numerical ==
== Adding more Classification classes and implementing missing methods in statistics package ==


These projects involve implementing certain mathematical functions, primarily in core Octave.
Although a ClassificationKNN class was added in the latest statistics release (1.6.1), it still lacks several methods (only `predict` is available at the moment). This GSoC project aims at implementing more methods, such as crossval, cvloss, lime, loss, margin, partialDependence, plotPartialDependence, etc., as well as adding more classdefs related to classification classes, such as ClassificationGAM, ClassificationDiscriminant, ClassificationSVM, ClassificationNeuralNetwork, ClassificationNaiveBayes, etc. The statistics package, although heavily developed during the past years, still lacks a lot of classdef functionality. The scope is to implement classification classdef objects and their relevant methods in a MATLAB-compatible way.  


=== ode15{i,s} : Matlab Compatible DAE solvers ===
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours (hard)
* '''Required skills'''
: Octave, classdef, good knowledge of statistical methods
* '''Potential mentors'''
: [https://octave.discourse.group/u/pr0m1th3as Andreas Bertsatos]


An initial implementation of a Matlab compatible ode15{i,s} solver,
== Custom re-implementation of the texi2html (v.1.82) command line tool ==
based on [http://computation.llnl.gov/projects/sundials SUNDIALS],
was done by Francesco Faccio during
GSOC 2016.
The blog describing the work is [http://gsoc2016ode15s.blogspot.it/ here].
The resulting code has been pushed into the main Octave repository in the development branch and
consists mainly of the following three files
[https://hg.savannah.gnu.org/hgweb/octave/file/tip/libinterp/dldfcn/__ode15__.cc __ode15__.cc],
[https://hg.savannah.gnu.org/hgweb/octave/file/tip/scripts/ode/ode15i.m ode15i.m] and
[https://hg.savannah.gnu.org/hgweb/octave/file/tip/scripts/ode/ode15s.m ode15s.m].
The list of outstanding tracker tickets concerning this implementation can be found
[https://savannah.gnu.org/search/?Search=Search&words=ode15&type_of_search=bugs&only_group_id=1925&exact=1&max_rows=25#options here]


Possible useful improvements that could be done in a new project include:
Implement a compiled .oct function to relax the dependency of the pkg-octave-doc package on texi2html (v.1.82) command line tool, which is no longer maintained or further developed but also not readily available to all linux distributions. The idea is to have a `texi2html` function within the pkg-octave-doc package that will replace the functionality of the texi2html (v.1.82) command line tool. This will also help improve the speed of pkg-octave-doc processing large packages, which contain specific tags (such as @math) which are currently handled within Octave code.


* Implement a better function for selecting consistent initial conditions compatible with Matlab's decic.m. The algorithm to use is described [http://faculty.smu.edu/shampine/cic.pdf here]
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours (hard)
* '''Required skills'''
: Perl, C++, Octave, Texinfo, HTML
* '''Potential mentors'''
: [https://octave.discourse.group/u/pr0m1th3as Andreas Bertsatos]


* make ode15{i,s} work with datatypes other than double


* improve interpolation at intermediate time steps.
== Port Chebfun to Octave and improve classdef support ==


* general code profiling and optimization
[https://www.chebfun.org| Chebfun] uses interpolation to approximate functions to very high accuracy, giving numerical computing that feels like symbolic computing.
 
The software is implemented as collection of "classdef" classes and is Free and Open Source Software.
Other tasks, not strictly connected to ode15{i,s} but closely related, that could be added
However, Chebfun does not yet work with Octave, largely due to differences and issues with Octave's classdef implementation.
to a possible project plan would be improving documentation and tests in odepkg and removing
This project has two aims: (1) make changes to the Chebfun code to make it work on Octave and (2) improve Octave's classdef functionality.
overlaps with the documentation in core Octave.
Some initial steps toward to first goal can be found on [https://github.com/cbm755/chebfun/tree/octave_dev| this octave_dev branch].
The second goal will likely involve a collaborative effort because classdef is a priority on [https://hg.savannah.gnu.org/hgweb/octave/file/tip/etc/ROADMAP.md | Octave's Development Roadmap] and because other proposed projects also involve classdef.
   
   
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours (hard)
* '''Required skills'''
* '''Required skills'''
: C++; C; familiarity with numerical methods for DAEs; Basic knowledge of makefiles and/or autotools.
: Octave, object-oriented programming, polynomial interpolation and approximation theory, C++.
* '''Difficulty'''
: Medium.
* '''Potential mentors'''
* '''Potential mentors'''
: Francesco Faccio, Carlo de Falco, Marco Caliari, Jacopo Corno, Sebastian Schöps
: [https://octave.discourse.group/u/cbm Colin B. Macdonald]


== Adding functionality to packages ==


<!--
== ode15{i,s} : Matlab Compatible DAE solvers ==


=== EPA hydrology software suite ===
An initial implementation of Matlab compatible Differential Algebraic Equations (DAE) solvers, {{manual|ode15i}} and {{manual|ode15s}}, based on [https://computing.llnl.gov/projects/sundials SUNDIALS],
Create native interfaces to the EPA software suites.
was done by [https://gsoc2016ode15s.blogspot.com/ Francesco Faccio during GSoC 2016].  The code is maintained in the main Octave repository and consists mainly of the following three files: [https://hg.savannah.gnu.org/hgweb/octave/file/tip/libinterp/dldfcn/__ode15__.cc {{path|libinterp/dldfcn/__ode15__.cc}}], [https://hg.savannah.gnu.org/hgweb/octave/file/tip/scripts/ode/ode15i.m {{path|scripts/ode/ode15i.m}}] and [https://hg.savannah.gnu.org/hgweb/octave/file/tip/scripts/ode/ode15s.m {{path|scripts/ode/ode15s.m}}].


Starting points
The {{manual|decic}} function for selecting consistent initial conditions for ode15i can be made more Matlab compatible by using [http://dx.doi.org/10.1515/JNMA.2002.291 another algorithm]. Another useful extension is to make ode15{i,s} work with datatypes other than double and to improve interpolation at intermediate time steps.
* [https://forja.cica.es/projects/epanet-octave/ epanet-octave].
* [https://github.com/OpenWaterAnalytics/ Open Water Analytics]


* '''SWMM'''
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
** [https://www.epa.gov/water-research/storm-water-management-model-swmm Official page]
: ~350 hours (medium)
** Check work done in [https://github.com/water-systems/MatSWMM MatSWMM] [http://digital.csic.es/bitstream/10261/132982/1/MatSWMM.pdf article]
* '''Required skills'''
: Octave, C/C++; familiarity with numerical methods for DAEs
* '''Potential mentors'''
: Francesco Faccio, [https://octave.discourse.group/u/cdf Carlo de Falco], [https://octave.discourse.group/u/marco_caliari Marco Caliari], Jacopo Corno, [https://octave.discourse.group/u/schoeps Sebastian Schöps]
-->
 
<!--
== PolarAxes and Plotting Improvements ==


* '''EPANET'''
Octave currently provides support for polar axes by using a Cartesian 2-D axes and adding a significant number of properties and callback listeners to get things to work. What is needed is the implementation of a dedicated "polaraxes" object in C++. This will require creating a new fundamental graphics object type, and programming in C++/OpenGL to render the object.  When "polaraxes" exists as an object type, then m-files will be written to access them, including polaraxes.m, polarplot.m, rticks.m, rticklabels.m, thetaticks, thetaticklabels.m, rlim.m, thetalim.m.  This relates to bug {{bug|49804}}.
** [https://www.epa.gov/water-research/epanet Official page]


* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours (medium)
* '''Required skills'''
* '''Required skills'''
: m-file scripting, C, C++, API knowledge, file I/O, classdef (optional).  
: Octave, C/C++; optional experience with OpenGL programming
* '''Potential mentors'''
: [https://octave.discourse.group/u/rik Rik]
-->


* '''Difficulty'''
<!--
: easy/medium
== Table datatype ==


* '''Mentor'''
In 2013, Matlab introduced a [https://www.mathworks.com/help/matlab/tables.html new table datatype] to conveniently organize and access data in tabular form.  This datatype has not been introduced to Octave yet (see bug {{bug|44571}}).  However, there are two initial implementation approaches https://github.com/apjanke/octave-tablicious and https://github.com/gnu-octave/table.
: [[User:KaKiLa|KaKiLa]]


===  FullSWOF overland flow simulator ===
Based upon the existing approaches, the goal of this project is to define an initial subset of [https://www.mathworks.com/help/matlab/tables.htmlMatlab's table functions], which involve sorting, splitting, merging, and file I/O and implement it within the given time frame.
Create scripting tools for (optional: native interfaces).
 
Starting points
* [https://www.idpoisson.fr/fullswof/ The FullSWOF Project].
* [https://arxiv.org/abs/1204.3210 FullSWOF: A software for overland flow simulation]
* [https://bitbucket.org/binello7/fswof2d Initial work on Bitbucket]


* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours (hard)
* '''Required skills'''
* '''Required skills'''
: m-file scripting, C, C++, API knowledge, file I/O, classdef (optional).
: Octave, C/C++
* '''Potential mentors'''
: ???
-->


* '''Difficulty'''
<!--
: easy/medium
== TISEAN package ==


* '''Mentor'''
The [[TISEAN package]] provides an Octave interface to [https://www.pks.mpg.de/~tisean/Tisean_3.0.1/index.html TISEAN] is a suite of code for nonlinear time series analysis.  In 2015, another GSoC project started with the work to create interfaces to many TISEAN functions, but [[TISEAN_package:Procedure | there is still work left to do]].  There are missing functions to do computations on spike trains, to simulate autoregresive models, to create specialized plots, etc.  These are of importance for many scientific disciplines involving statistical computations and signal processing.
: [[User:KaKiLa|KaKiLa]]


=== TISEAN package ===
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours (medium)
* '''Required skills'''
: Octave, C/C++; FORTRAN API knowledge
* '''Potential mentors'''
: [https://octave.discourse.group/u/kakila KaKiLa]
-->


[http://www.mpipks-dresden.mpg.de/~tisean/Tisean_3.0.1/index.html TISEAN] is a suite of code for nonlinear time series analysis. It has been [[TISEAN package | partially re-implemented]] as libre software. The objective is to integrate TISEAN as an Octave Forge package, as was done for the Control package.
<!--
[[TISEAN_package | A lot has been completed]] but [[TISEAN_package:Procedure | there is still work left to do]].
== Better tab completion ==


There are missing functions to do computations on spike trains, to simulate autoregresive models, to create specialized plots, etc. Do check [[TISEAN_package:Procedure#Table_of_functions|the progress of the project]] to see if you are interested.
Links: [https://savannah.gnu.org/bugs/index.php?62492 https://savannah.gnu.org/bugs/index.php?62492] and [https://savannah.gnu.org/bugs/?53384 https://savannah.gnu.org/bugs/?53384]
* [http://octave.sourceforge.net/tisean/overview.html Package help at source forge.]  
* [https://sourceforge.net/p/octave/tisean/ci/default/tree/ Package repository at source forge.]  


* '''Required skills'''
Description: currently pressing Tab at the Octave command prompt attempts autocompletion of all identifiers in scope (variables, functions, classdefs etc) as well as files and directories in the path. It is not context sensitive.
: m-file scripting, C, C++, and FORTRAN API knowledge.  
* '''Difficulty'''
: easy/medium
* '''Mentor'''
: [[User:KaKiLa|KaKiLa]]


=== Symbolic package ===
Project: Improve tab completion. For example,


Octave's [https://github.com/cbm755/octsympy Symbolic package] provides symbolic computing and other [https://en.wikipedia.org/wiki/Computer_algebra_system computer algebra system] tools.  The main component of Symbolic is a pure m-file class "@sym" which uses the Python package [https://www.sympy.org SymPy] to do (most of) the actual computations.  The package aims to expose the full functionality of SymPy while also providing a high level of compatibility with the Matlab Symbolic Math Toolbox.  The Symbolic package requires communication between Octave and Python.  A GSoC2016 project successfully re-implemented this communication using the new [[Pythonic|Pythonic package]].
* Typing
: load x
and then pressing tab should ideally give all loadable files and directories starting with x, not unrelated results like variables or functions.  


This project proposes to go further: instead of using Pythonic only for the communication layer, we'll use it throughout the Symbolic project.  For example, we might make "@sym" a subclass of "@pyobject".  We also could stop using the "python_cmd" interface and use Pythonic directly from methods.  The main goal was already mentioned: to expose the *full functionality* of SymPy.  For example, we would allow OO-style method calls such as "f.diff(x)" instead of "diff(f, x)".
* Typing
:cd
and tab should only give directories.


* '''Required skills'''
* Any file and directory names that are included in the results should include those with spaces and special characters including those that would be interpreted as operators by Octave.
: OO-programming with m-files, Python, and possibly C/C++ for improving Pythonic (if needed).
* '''Difficulty'''
: easy/medium
* '''Mentors and/or other team members'''
: Colin B. Macdonald, Mike Miller, Abhinav Tripathi


=== OCS ===
* Typing commands like
: axis
or
: format
and pressing tab should give only those options relevant to that command. E.g. format can be followed by short / long / loose / compact etc but not by a file or variable. Similarly axis can be followed by ij / xy / tight / equal / actual limits etc but not by files or directories. And so on for other commands. This should be made possible for both preexisting commands and for yet-to-be-written commands without any rewriting of existing function code or documentation.


[[Ocs package | OCS]] is a circuit simulator for Octave. The objective of this project is to update the code to use modern features of Octave (e.g. classdef), [https://savannah.gnu.org/search/?Search=Search&words=%28ocs%29&type_of_search=bugs&only_group_id=1925&exact=1&max_rows=25#options fix open bugs], increase compatibility with SPICE and improve compatibility with other Octave packages (odepkg, control etc).
To get more examples, see how bash completion works. You can type git or hg and then tab and it will give the list of available commands. If you type "sort --r" and then tab, it gives the list of options to sort starting with "--r", etc.
* [http://octave.sourceforge.net/ocs/overview.html Package help at source forge.]


* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours (medium)
* '''Required skills'''
* '''Required skills'''
: m-file scripting, C, C++, and FORTRAN API knowledge.
: ???
* '''Difficulty'''
* '''Potential mentors'''
: easy/medium
: ???
* '''Mentor'''
-->
: Sebastian Schöps, Carlo de Falco


== Infrastructure ==
<!--
== Graphics rendering back to front sorting ==


=== Using Python within Octave ===
Several incompatibilities have been identified in how Octave plots transparent objects in 3D, causing certain transparent objects to hide opaque objects behind them even though they're not supposed to. The vast majority of them were isolated to one problem: if the objects to be drawn are rendered such that the one farthest away from the viewer is rendered first and nearer objects are rendered on top of that, then transparency would be automatically achieved, but this needs very careful coding to stay performant and to avoid rendering objects that will be overwritten fully by others. See [https://savannah.gnu.org/bugs/?57980] for a summary.


[[Pythonic]] allows one to call Python functions and interact with Python objects from within Octave .m file code and from the Octave command line interface.  Pythonic may eventually not be a separate package, but rather a core feature of Octave.  This project aims to improve Pythonic with the goal of making the package more stable, maintainable, and full-featured.
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours (medium)
* '''Required skills'''
: ???
* '''Potential mentors'''
: ???
-->


Based on a previous summer project related to Pythonic, this work will consist of fast-paced collaborative software development based on tackling the [https://gitlab.com/mtmiller/octave-pythonic/issues Pythonic issue list].  You would also be expected to participate in software design decisions and discussion, as well as improve documentation, doctests, and unit tests.  As an example of the sorts of decisions being made, note that Octave indexes from 1 whereas Python typically indexes from 0; in which cases is it appropriate to make this transparent to the user?
<!--
== Symbolic package ==


* '''Mentors'''
The [[Symbolic package]] provides symbolic computing and other [https://en.wikipedia.org/wiki/Computer_algebra_system computer algebra system] tools via the [https://sympy.org SymPy Python library].  GSoC projects in 2016 and 2022 improved the package.
: Mike Miller, Colin B. Macdonald, Abhinav Tripathi, others?


== Image Analysis ==
There are no specific plans for Symbolic in GSoC 2023, but improvements elsewhere that would help Symbolic include:
* Developing the Octave-Pythonic package.
* Fix the storage of non-expressions by working with upstream SymPy: currently we rely on deprecated functionality in SymPy.
* Improvements and fixes to classdef-related issues in Octave itself.
* Developing the Octave Jupyter kernel.


=== Improve Octave's image IO ===
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours (medium)
* '''Required skills'''
: ???
* '''Potential mentors'''
: ???
-->


There are a lot of image formats. Octave uses [http://www.graphicsmagick.org/ GraphicsMagic] (GM), a library capable of handling [http://www.graphicsmagick.org/formats.html a lot of them] in a single C++ interface. However, GraphicsMagick still has its limitations. The most important are:
= Project sizes =


* GM has build option {{codeline|quantum}} which defines the bitdepth to use when reading an image. Building GM with high quantum means that images of smaller bitdepth will take a lot more memory when reading, but building it too low will make it impossible to read images of higher bitdepth. It also means that the image needs to always be rescaled to the correct range.
As of 2024, possible project sizes are 90 (small), 175 (medium), or 350 hours (large) <ref>https://developers.google.com/open-source/gsoc/faq#how_much_time_does_gsoc_participation_take</ref>.
* GM supports unsigned integers only, thus incorrectly reading files such as TIFF with floating point data
* GM hides details of the image such as whether the image file is indexed.  This makes it hard to access the real data stored on file.
 
This project would implement better image IO for scientific file formats while leaving GM handle the others. Since TIFF is the de facto standard for scientific images, this should be done first. Among the targets for the project are:
 
* implement the Tiff class, which is a wrapper around libtiff, using classdef. To avoid creating too many private __oct functions, this project could also create a C++ interface to declare new Octave classdef functions.
* improve imread, imwrite, and imfinfo for tiff files using the newly created Tiff class
* port bioformats into Octave and prepare a package for it
* investigate other image IO libraries
* clean up and finish the dicom package to include into Octave core
* prepare a Matlab-compatible implementation of the FITS package for inclusion in Octave core
 
* '''Required skills'''
: Knowledge of C++ and C, since most libraries are written in those languages.
* '''Difficulty'''
: Medium.
* '''Potential mentor'''
: Carnë Draug


== Graphics ==
= Footnotes =


=== PolarAxes and Plotting Improvements ===
<references />


Octave currently provides supports for polar axes by using a Cartesian 2-D axes and adding a significant number of properties and callback listeners to get things to work.  What is needed is the implementation of a dedicated "polaraxes" object in C++.  This will require creating a new fundamental graphics object type, and programming in C++/OpenGL to render the object.  When "polaraxes" exists as an object type, then m-files will be written to access them, including polaraxes.m, polarplot.m, rticks.m, rticklabels.m, thetaticks, thetaticklabels.m, rlim.m, thetalim.m.  This relates to {{bug|35565}}, {{bug|49804}}, {{bug|52643}}.
= See also =


* '''Minimum requirements'''
* https://summerofcode.withgoogle.com/
: Ability to read and write C++ code. Ability to read and write Octave code.  Experience with OpenGL programming is optional.
* [https://google.github.io/gsocguides/student/ GSoC Student Guide]
* '''Difficulty'''
* [https://google.github.io/gsocguides/mentor/ GSoC Mentor Guide]
: Medium.
* [https://developers.google.com/open-source/gsoc/timeline GSoC Timeline]
* '''Mentor'''
: Rik


<noinclude>
[[Category:Summer of Code]]
[[Category:Summer of Code]]
[[Category:Project Ideas]]
[[Category:Project Ideas]]
</noinclude>

Latest revision as of 05:22, 22 September 2024

Info icon.svg

Since 2011 the GNU Octave project has successfully mentored:

in Summer of Code (SoC) programs by Google and ESA.

Those SoC programs aim to advertise open-source software development and to attract potential new Octave developers.

Steps toward a successful application

  1. 😉💬 We want to get to know you (before the deadline). Communicate with us.
    • Join Octave Discourse or IRC for general discussion and to ask questions (Please do not use the bug tracker for general GSOC inquiries unrelated to specific bugs found with Octave.) Using a nickname is fine.
    • Show us that you're motivated to work on Octave 💻. There is no need to present an overwhelming CV 🏆; evidence of involvement with Octave is more important.
    • If you never talked to us, we will likely reject your proposal, even it looks good 🚮
  2. 👩‍🔬 Get your hands dirty.
    • We are curious about your programming skills 🚀
    • Use Octave!
      • If you come across something that does not work the way you like ➡️ try to fix that 🔧
      • Or if you find a missing function ➡️ try to implement it.
  3. 📝💡 Tell us what you are going to do.
    • Do not write just to say what project you're interested in. Be specific about what you are going to do, include links 🔗, show us you know what you are talking about 💡, and ask many smart questions 🤓
    • Remember, we are volunteer developers and not your boss 🙂
  4. 📔 Prepare your proposal with us.
    • Try to show us as early as possible a draft of your proposal 📑
    • If we see your proposal for the first time after the application deadline, it might easily contain some paragraphs not fully clear to us. Ongoing interaction will give us more confidence that you are capable of working on your project 🙂👍
    • Here’s a sample proposal outline that you can use as a reference when drafting your own application. Sample Proposal
    • Then submit the proposal following the applicable rules, e.g. for GSoC. 📨

How do we judge your application?

Depending on the mentors and SoC program there are varieties, but typically the main factors considered would be:

  • You have demonstrated interest in Octave and an ability to make substantial modifications to Octave
    The most important thing is that you've contributed some interesting code samples to judge your skills. It's OK during the application period to ask for help on how to format these code samples, which normally are Mercurial patches.
  • You showed understanding of your topic
    Your proposal should make it clear that you're reasonably well versed in the subject area and won't need all summer just to read up on it.
  • Well thought out, adequately detailed, realistic project plan
    "I'm good at this, so trust me" isn't enough. In your proposal, you should describe which algorithms you'll use and how you'll integrate with existing Octave code. You should also prepare a project timeline and goals for the midterm and final evaluations.

What you should know about Octave

GNU Octave is mostly written in C++ and its own scripting language that is mostly compatible with Matlab. There are bits and pieces of Fortran, Perl, C, awk, and Unix shell scripts here and there. In addition to being familiar with C++ and Octave's scripting language, you as successful applicant will be familiar with or able to quickly learn about Octave's infrastructure. You can't spend the whole summer learning how to build Octave or prepare a changeset and still successfully complete your project 😇

You should know:

  1. How to build Octave from its source code using the GNU build system.
  2. How to submit patches (changesets).

Suggested projects

The following suggested projects are distilled from the Projects page for the benefit of potential SoC participants. You can also look at our completed past projects, or the current | Octave Development Roadmap for more inspiration.

Info icon.svg
Do you use Octave at your working place or university? Do you have some numerical project in mind? You are always welcome to propose your own projects. If you are passionate about your project, it will be easy to find an Octave developer to mentor and guide you. Please note that for such a proposal to be successful it will almost certainly involve initiating pre-proposal discussion over at the Octave Discourse forum.

Adding more Classification classes and implementing missing methods in statistics package

Although a ClassificationKNN class was added in the latest statistics release (1.6.1), it still lacks several methods (only `predict` is available at the moment). This GSoC project aims at implementing more methods, such as crossval, cvloss, lime, loss, margin, partialDependence, plotPartialDependence, etc., as well as adding more classdefs related to classification classes, such as ClassificationGAM, ClassificationDiscriminant, ClassificationSVM, ClassificationNeuralNetwork, ClassificationNaiveBayes, etc. The statistics package, although heavily developed during the past years, still lacks a lot of classdef functionality. The scope is to implement classification classdef objects and their relevant methods in a MATLAB-compatible way.

  • Project size [?] and Difficulty
~350 hours (hard)
  • Required skills
Octave, classdef, good knowledge of statistical methods
  • Potential mentors
Andreas Bertsatos

Custom re-implementation of the texi2html (v.1.82) command line tool

Implement a compiled .oct function to relax the dependency of the pkg-octave-doc package on texi2html (v.1.82) command line tool, which is no longer maintained or further developed but also not readily available to all linux distributions. The idea is to have a `texi2html` function within the pkg-octave-doc package that will replace the functionality of the texi2html (v.1.82) command line tool. This will also help improve the speed of pkg-octave-doc processing large packages, which contain specific tags (such as @math) which are currently handled within Octave code.

  • Project size [?] and Difficulty
~350 hours (hard)
  • Required skills
Perl, C++, Octave, Texinfo, HTML
  • Potential mentors
Andreas Bertsatos


Port Chebfun to Octave and improve classdef support

Chebfun uses interpolation to approximate functions to very high accuracy, giving numerical computing that feels like symbolic computing. The software is implemented as collection of "classdef" classes and is Free and Open Source Software. However, Chebfun does not yet work with Octave, largely due to differences and issues with Octave's classdef implementation. This project has two aims: (1) make changes to the Chebfun code to make it work on Octave and (2) improve Octave's classdef functionality. Some initial steps toward to first goal can be found on this octave_dev branch. The second goal will likely involve a collaborative effort because classdef is a priority on | Octave's Development Roadmap and because other proposed projects also involve classdef.

  • Project size [?] and Difficulty
~350 hours (hard)
  • Required skills
Octave, object-oriented programming, polynomial interpolation and approximation theory, C++.
  • Potential mentors
Colin B. Macdonald





Project sizes

As of 2024, possible project sizes are 90 (small), 175 (medium), or 350 hours (large) [1].

Footnotes

See also