Summer of Code - Getting Started: Difference between revisions

From Octave
Jump to navigation Jump to search
 
(486 intermediate revisions by 63 users not shown)
Line 1: Line 1:
The following is distilled from the [[Projects]] page for the benefit of potential [http://code.google.com/soc/Google Summer of Code] students. Although students are welcome to attempt any of the projects in that page or any of their own choosing, here we offer some suggestions on what good student projects might be.
{{Note|GNU Octave is a [https://summerofcode.withgoogle.com/programs/2024/organizations/gnu-octave mentoring organization for GSoC 2024].}}


= General Guidelines =
Since 2011 the GNU Octave project has successfully mentored:
* [[Summer of Code | '''42 participants''' 🙂]]
* [[Summer of Code | '''44 projects''' 📝]]
in [[Summer of Code]] (SoC) programs by [https://summerofcode.withgoogle.com/ Google] and [https://esa.int/ ESA].


Octave is mostly written in (sadly, mostly undocumented) C++ and its own scripting language (m-scripts), which includes (or should include) most of the Matlab language as a subset. We generally prefer a different Octave house style to the usual Matlab style for m-scripts, but it's primarily a superficial stylistic difference. Additionally, there are bits and pieces of Fortran, Perl, C, awk, and Unix shell scripts here and there. In addition to being familiar with C++ and/or Octave or Matlab's scripting languages, you should probably be familiar or learn about Octave's infrastructure:
Those SoC programs aim to advertise open-source software development and to attract potential new Octave developers.


* [http://en.wikipedia.org/wiki/GNU_build_system The GNU build system] is used to build Octave. While you generally don't need to understand too much unless you actually want to change how Octave is built, you should be able to understand enough to get a general idea of how to build Octave. If you've ever done a <tt>configure && make && make install</tt> series of commands, you have already used the GNU build system.
= Steps toward a successful application =
* [http://mercurial.selenic.com/ Mercurial] (abbreviated hg) is the [http://en.wikipedia.org/wiki/Distributed_Version_Control_System distributed version control system] (DVCS) we use for managing our source code. You should have some basic understanding of how a DVCS works, but hg is pretty easy to pick up, especially if you already know a VCS like git or svn.
* You should also read the same [http://www.gnu.org/software/octave/doc/interpreter/Contributing-Guidelines.html#Contributing-Guidelines contributing] [http://hg.savannah.gnu.org/hgweb/octave/file/tip/etc/HACKING guidelines] we have for everyone.
* We primarily use [http://www.gnu.org/software/octave/archive.html mailing lists] for communication. You should follow basic mailing list etiquette. For us, this mostly means "do not [http://en.wikipedia.org/wiki/Top_posting#Top-posting top post]".
* We also have [http://www.gnu.org/software/octave/chat.html an IRC channel]. The atmosphere is more relaxed, and we may talk about things that are not at all related to Octave.
* [http://octave.sf.net Octave-Forge] is a project closely related to Octave where packages reside. They are somewhat analogous to Matlab's toolboxes.
* In addition, you probably should know '''some''' mathematics, engineering, or experimental science or something of the sort. If you've used Matlab before, you probably have already been exposed to the kinds of problems that Octave is used for.


= Suggested projects =
# 😉💬 '''We want to get to know you (before the deadline).  Communicate with us.'''
#* Join [https://octave.discourse.group/ '''Octave Discourse'''] or [[IRC]] for general discussion and to ask questions (Please do not use the bug tracker for general GSOC inquiries unrelated to specific bugs found with Octave.) Using a nickname is fine.
#* Show us that you're motivated to work on Octave 💻.  There is no need to present an overwhelming CV 🏆; evidence of involvement with Octave is more important.
#* '''<span style="color:darkblue;">If you never talked to us, we will likely reject your proposal</span>''', even it looks good 🚮
# 👩‍🔬 '''Get your hands dirty.'''
#* We are curious about your programming skills 🚀
#** Your application will be much stronger if you [https://savannah.gnu.org/bugs/?group=octave fix Octave bugs] or [https://savannah.gnu.org/patch/?group=octave submit patches] before or during the application period.
#** You can take a look at the [[short projects]] for some simple bugs to start with.
#* '''Use Octave!'''
#** If you come across something that does not work the way you like ➡️ try to fix that 🔧
#** Or if you find a missing function ➡️ try to implement it.
# 📝💡 '''Tell us what you are going to do.'''
#* Do not write just to say what project you're interested in.  Be specific about what you are going to do, include links 🔗, show us you know what you are talking about 💡, and ask many [http://www.catb.org/esr/faqs/smart-questions.html smart questions] 🤓
#* Remember, '''we are volunteer developers and not your boss''' 🙂
# 📔 '''Prepare your proposal with us.'''
#* Try to show us as early as possible a draft of your proposal 📑
#* If we see your proposal for the first time after the application deadline, it might easily contain some paragraphs not fully clear to us.  Ongoing interaction will give us more confidence that you are capable of working on your project 🙂👍
#* Here’s a sample proposal outline that you can use as a reference when drafting your own application. [https://docs.google.com/document/d/1kGtT9_f0FrXdCKwyKEWwOV6R-AU90bkd/edit?usp=sharing&ouid=115736651221450989198&rtpof=true&sd=true Sample Proposal]
#* Then submit the proposal following the applicable rules, e.g. for [https://google.github.io/gsocguides/student/writing-a-proposal GSoC]. 📨


The following projects are broadly grouped by category and probable skills required to tackle each. Remember to check [[Projects]] for more ideas if none of these suit you, and your own ideas are always welcome.
= How do we judge your application? =


== Numerical ==
Depending on the mentors and SoC program there are varieties, but typically the main factors considered would be:


These projects involve implementing certain mathematical functions in Octave.
* '''You have demonstrated interest in Octave and an ability to make substantial modifications to Octave'''
*: The most important thing is that you've contributed some interesting code samples to judge your skills. It's OK during the application period to ask for help on how to format these code samples, which normally are Mercurial patches.


'''Required skills''': You should understand quite a bit of mathematics. Words like "eigenvalue", "analytic", and "Taylor series" shouldn't scare you at all. There is probably little C++ experience required, and probably many of these problems can be solved with m-scripts.
* '''You showed understanding of your topic'''
*: Your proposal should make it clear that you're reasonably well versed in the subject area and won't need all summer just to read up on it.


'''Difficulty''': Mid-to-hard depending how much mathematics you know and how well you can read numerical analysis journal articles.
* '''Well thought out, adequately detailed, realistic project plan'''
*: "I'm good at this, so trust me" isn't enough.  In your proposal, you should describe which algorithms you'll use and how you'll integrate with existing Octave code.  You should also prepare a project timeline and goals for the midterm and final evaluations.


'''Potential mentor''': Carlo de Falco, Nir Krakauer, Fotios Kasolis
= What you should know about Octave =


=== Improve logm, sqrtm, funm ===
GNU Octave is mostly written in C++ and its own scripting language that is mostly compatible with Matlab. There are bits and pieces of Fortran, Perl, C, awk, and Unix shell scripts here and there. In addition to being familiar with C++ and Octave's scripting language, you as successful applicant will be familiar with or able to quickly learn about Octave's infrastructure. You can't spend the whole summer learning how to build Octave or prepare a changeset and still successfully complete your project 😇


The goal here is to implement some missing Matlab functions related to matrix functions like the [http://en.wikipedia.org/wiki/Matrix_exponential matrix exponential]. There is [http://octave.1599824.n4.nabble.com/matrix-functions-td3137935.html a general discussion] of the problem.
You should know:
# How to build Octave from its source code using [http://en.wikipedia.org/wiki/GNU_build_system the GNU build system].
#* Read in this wiki: [[Developer FAQ]], [[Building]]
#* Tools to know: [https://en.wikipedia.org/wiki/GNU_Compiler_Collection gcc], [https://en.wikipedia.org/wiki/Make_(software) make]
# How to submit patches (changesets).
#* Read in this wiki: [[Contribution guidelines]], [[Mercurial]]
#* Tools to know: [https://en.wikipedia.org/wiki/Mercurial Mercurial (hg)], [https://en.wikipedia.org/wiki/Git git]


=== Generalised eigenvalue problem ===
= Suggested projects =
 
[http://www.mathworks.com/help/techdoc/ref/eig.html Certain calling forms] of the <tt>eig</tt> function are missing. The problem is to understand what those missing forms are and implement them.
 
=== Various sparse matrix improvements ===
 
The implementation of sparse matrices in Octave needs several improvements. Any of [[Projects#Sparse Matrices|these]] would be good. The paper by [http://arxiv.org/abs/cs.MS/0604006 Bateman & Adler] is good reading for understanding the sparse matrix implementation.
 
=== [http://en.wikipedia.org/wiki/Least-squares_spectral_analysis Least-squares spectral analysis] ===
 
Develop and test as an [http://octave.sourceforge.net/ Octave-Forge] package functionality for fast evaluation of harmonics and cross-correlations of unevenly sampled and nonstationary time series, possibly building on [http://www.jstatsoft.org/v11/i02 this paper] (which has C code with interface to R).
 
=== Implement solver for initial-boundary value problems for parabolic-elliptic PDEs in 1D ===
 
The project will deliver a solver for initial-boundary value problems for parabolic-elliptic PDEs in 1D similar to Matlab's function <tt>pdepe</tt>. A good starting point is the [http://en.wikipedia.org/wiki/Method_of_lines method of lines] for which you can find more details [http://en.wikibooks.org/wiki/Partial_Differential_Equations/Method_of_Lines here] and [http://www.scholarpedia.org/article/Method_of_lines here], whereas an example implementation can be found [http://www.scholarpedia.org/article/Method_of_Lines/Example_Implementation here]. In addition, [http://www.pdecomp.net/ this page] provides some useful material.
 
== GUI ==
 
Octave is currently working on a new native GUI. It is written in Qt, but it is still not ready for production. There are various ways in which it could be improved.
 
'''Required skills''': C++ and Qt. Whatever tools you want to use to write Qt code are fine, but Qt Creator is a popular choice nowadays.
 
'''Difficulty''': Mostly medium, depending if you've had Qt or GUI development experience before.
 
'''Potential mentor''': Jordi Gutiérrez Hermoso, Michael Goffioul
 
=== Finish the Octave GUI ===
 
The GUI is currently on its own branch in hg. It is not stable enough and its design is still in flux. It is in a very alpha stage and needs to be turned into a real usable product. At the moment, it consists of the basic building blocks (terminal window, editor, variable browser, history, file browser) that are put together into a main interface. The GUI uses the Qt library. Among the things to improve are:
* define and implement a flexible docking system allowing to place any subwindow at any location
* improve integration with octave: variable browser/editor, debugger, profiler...
* define and implement an option/preferences dialog
* improve additional components like the embedded [http://code.google.com/p/qirc/ IRC client] or the documentation browser
 
=== Integrate the GUI with the Octave build system ===
 
The current GUI build system is independent of Octave. First one builds and installs Octave, and then the GUI. The goal of this project is to integrate the GUI and make it all build together. Good understanding of both the GNU build system and Qt's ([http://en.wikipedia.org/wiki/Qmake qmake] and the [http://en.wikipedia.org/wiki/Meta-object_System meta-object compiler])  will be necessary here.


=== Implement a Qt widget for manipulating plots ===
The following suggested projects are distilled from the [[Projects]] page for the benefit of potential SoC participants.  You can also look at our [[Summer of Code|completed past projects]], or the current [https://hg.savannah.gnu.org/hgweb/octave/file/tip/etc/ROADMAP.md | Octave Development Roadmap] for more inspiration.


Octave has had for some time a native OpenGL plotter. The plotter requires some user interaction for manipulating the plots, and it's been using fltk for quite some time. We want to replace this with Qt, so it fits better with the overall GUI look-and-feel and is easier to extend in the future.
{{Note|Do you use Octave at your working place or university? Do you have some numerical project in mind?  You are always welcome to '''propose your own projects'''. If you are passionate about your project, it will be easy to find an Octave developer to mentor and guide you. Please note that for such a proposal to be successful it will almost certainly involve initiating pre-proposal discussion over at the [https://octave.discourse.group Octave Discourse forum].}}


This project might simply be to implement/integrate the existing [https://github.com/goffioul/QtHandles QtHandles] into Octave, in which case, it should be relatively easy.
== Adding more Classification classes and implementing missing methods in statistics package ==


=== Create a better (G)UI for the profiler ===
Although a ClassificationKNN class was added in the latest statistics release (1.6.1), it still lacks several methods (only `predict` is available at the moment). This GSoC project aims at implementing more methods, such as crossval, cvloss, lime, loss, margin, partialDependence, plotPartialDependence, etc., as well as adding more classdefs related to classification classes, such as ClassificationGAM, ClassificationDiscriminant, ClassificationSVM, ClassificationNeuralNetwork, ClassificationNaiveBayes, etc. The statistics package, although heavily developed during the past years, still lacks a lot of classdef functionality. The scope is to implement classification classdef objects and their relevant methods in a MATLAB-compatible way.


During GSoC 2011, Daniel Kraft successfully implemented a profiler for Octave. It needs a better interface and a way to generate reports. This may be done with Qt, but not necessarily, and HTML reports might also be good.
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours (hard)
* '''Required skills'''
: Octave, classdef, good knowledge of statistical methods
* '''Potential mentors'''
: [https://octave.discourse.group/u/pr0m1th3as Andreas Bertsatos]


=== Create a graphical design tool for tuning closed loop control system (control pkg) ===
== Custom re-implementation of the texi2html (v.1.82) command line tool ==


When tuning a SISO feedback system it is very helpful to be able to grab a pole or a zero and move them by dragging them with the mouse. As they are moving the software must update all the plotted lines. There should be the ability to display various graphs rlocuse, bode, step, impulse etc. and have them all change dynamically as the mouse is moving. The parameters of the compensator must be displayed and updated.
Implement a compiled .oct function to relax the dependency of the pkg-octave-doc package on texi2html (v.1.82) command line tool, which is no longer maintained or further developed but also not readily available to all linux distributions. The idea is to have a `texi2html` function within the pkg-octave-doc package that will replace the functionality of the texi2html (v.1.82) command line tool. This will also help improve the speed of pkg-octave-doc processing large packages, which contain specific tags (such as @math) which are currently handled within Octave code.
Potential mentor: Doug Stewart


== Graphics ==
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours (hard)
* '''Required skills'''
: Perl, C++, Octave, Texinfo, HTML
* '''Potential mentors'''
: [https://octave.discourse.group/u/pr0m1th3as Andreas Bertsatos]


Octave has a new native OpenGL plotter (currently via [http://en.wikipedia.org/wiki/Fltk fltk], but we want to move away from that). There are several possible projects involved with it. Michael Goffioul has expressed interest in mentoring these projects.


'''Required skills''': C++ and OpenGL. General understanding of computer graphics.
== Port Chebfun to Octave and improve classdef support ==


'''Difficulty''': Medium, depending on your previous understanding of the topic.
[https://www.chebfun.org| Chebfun] uses interpolation to approximate functions to very high accuracy, giving numerical computing that feels like symbolic computing.
The software is implemented as collection of "classdef" classes and is Free and Open Source Software.
However, Chebfun does not yet work with Octave, largely due to differences and issues with Octave's classdef implementation.
This project has two aims: (1) make changes to the Chebfun code to make it work on Octave and (2) improve Octave's classdef functionality.
Some initial steps toward to first goal can be found on [https://github.com/cbm755/chebfun/tree/octave_dev| this octave_dev branch].
The second goal will likely involve a collaborative effort because classdef is a priority on [https://hg.savannah.gnu.org/hgweb/octave/file/tip/etc/ROADMAP.md | Octave's Development Roadmap] and because other proposed projects also involve classdef.
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours (hard)
* '''Required skills'''
: Octave, object-oriented programming, polynomial interpolation and approximation theory, C++.
* '''Potential mentors'''
: [https://octave.discourse.group/u/cbm Colin B. Macdonald]


'''Potential mentor''': Michael Goffioul


=== Lighting ===
<!--
== ode15{i,s} : Matlab Compatible DAE solvers ==


Implement transparency and lighting in OpenGL backend(s). A basic implementation was available in [http://octave.svn.sourceforge.net/viewvc/octave/trunk/octave-forge/extra/jhandles/ JHandles]. This needs to be ported/re-implement/re-engineered/optimized in the C++ OpenGL renderer of Octave.
An initial implementation of Matlab compatible Differential Algebraic Equations (DAE) solvers, {{manual|ode15i}} and {{manual|ode15s}}, based on [https://computing.llnl.gov/projects/sundials SUNDIALS],
was done by [https://gsoc2016ode15s.blogspot.com/ Francesco Faccio during GSoC 2016].  The code is maintained in the main Octave repository and consists mainly of the following three files: [https://hg.savannah.gnu.org/hgweb/octave/file/tip/libinterp/dldfcn/__ode15__.cc {{path|libinterp/dldfcn/__ode15__.cc}}], [https://hg.savannah.gnu.org/hgweb/octave/file/tip/scripts/ode/ode15i.m {{path|scripts/ode/ode15i.m}}] and [https://hg.savannah.gnu.org/hgweb/octave/file/tip/scripts/ode/ode15s.m {{path|scripts/ode/ode15s.m}}].


=== Non-OpenGL renderer ===
The {{manual|decic}} function for selecting consistent initial conditions for ode15i can be made more Matlab compatible by using [http://dx.doi.org/10.1515/JNMA.2002.291 another algorithm].  Another useful extension is to make ode15{i,s} work with datatypes other than double and to improve interpolation at intermediate time steps.


Besides the original gnuplot backend, Octave also contains an OpenGL-based renderer for advanced and more powerful 3D plots. However, OpenGL is not perfectly suited for 2D-only plots where other methods could result in better graphics. The purpose of this project is to implement an alternate graphics renderer for 2D only plots (although 3D is definitely not the focus, extending the new graphics renderer to support basic 3D features should also be taken into account). There is not fix constaints on the toolkit/library to use, but natural candidates are:
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
* [http://qt.nokia.com Qt]: the GUI is currently written in Qt and work is also in progress to provide a Qt/OpenGL based backend [https://github.com/goffioul/QtHandles]
: ~350 hours (medium)
* [http://en.wikipedia.org/wiki/Cairo_%28software%29 Cairo]: this library is widely used and known to provides high-quality graphics with support for PS/PDF/SVG output.
* '''Required skills'''
: Octave, C/C++; familiarity with numerical methods for DAEs
* '''Potential mentors'''
: Francesco Faccio, [https://octave.discourse.group/u/cdf Carlo de Falco], [https://octave.discourse.group/u/marco_caliari Marco Caliari], Jacopo Corno, [https://octave.discourse.group/u/schoeps Sebastian Schöps]
-->


=== LaTeX markup ===
<!--
== PolarAxes and Plotting Improvements ==


Implement LaTeX markup for text objects using OpenGL graphics toolkits.
Octave currently provides support for polar axes by using a Cartesian 2-D axes and adding a significant number of properties and callback listeners to get things to work.  What is needed is the implementation of a dedicated "polaraxes" object in C++.  This will require creating a new fundamental graphics object type, and programming in C++/OpenGL to render the object.  When "polaraxes" exists as an object type, then m-files will be written to access them, including polaraxes.m, polarplot.m, rticks.m, rticklabels.m, thetaticks, thetaticklabels.m, rlim.m, thetalim.m.  This relates to bug {{bug|49804}}.


== Interpreter ==
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours (medium)
* '''Required skills'''
: Octave, C/C++; optional experience with OpenGL programming
* '''Potential mentors'''
: [https://octave.discourse.group/u/rik Rik]
-->


The interpreter is written in C++, undocumented. There are many possible projects associated with it.
<!--
== Table datatype ==


'''Required skills''': ''Very good'' C and C++ knowledge, possibly also understanding of [http://en.wikipedia.org/wiki/Gnu_bison GNU bison] and [http://en.wikipedia.org/wiki/Flex_lexical_analyser flex]. Understanding how compilers and interpreters are made plus being able to understand how to use a profiler and a debugger will probably be essential skills.
In 2013, Matlab introduced a [https://www.mathworks.com/help/matlab/tables.html new table datatype] to conveniently organize and access data in tabular form.  This datatype has not been introduced to Octave yet (see bug {{bug|44571}}).  However, there are two initial implementation approaches https://github.com/apjanke/octave-tablicious and https://github.com/gnu-octave/table.


'''Difficulty''': Mid hard to very hard. Some of the biggest problems will probably be the interpreter.
Based upon the existing approaches, the goal of this project is to define an initial subset of [https://www.mathworks.com/help/matlab/tables.htmlMatlab's table functions], which involve sorting, splitting, merging, and file I/O and implement it within the given time frame.


'''Potential mentors''': John W. Eaton, Jordi Gutiérrez Hermoso
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours (hard)
* '''Required skills'''
: Octave, C/C++
* '''Potential mentors'''
: ???
-->


=== Implement (or improve?) JIT compiling ===
<!--
== TISEAN package ==


Octave's interpreter is ''very'' slow on loops. Implementing JIT compiling would dramatically speed up execution of these loops. This is a very big project, but a dedicated student might make a good attempt of doing this over a summer. There may be some work already in place by the time the summer comes along. The idea is to probably use [http://en.wikipedia.org/wiki/Llvm LLVM] to aid with the JIT compilation.
The [[TISEAN package]] provides an Octave interface to [https://www.pks.mpg.de/~tisean/Tisean_3.0.1/index.html TISEAN] is a suite of code for nonlinear time series analysis. In 2015, another GSoC project started with the work to create interfaces to many TISEAN functions, but [[TISEAN_package:Procedure | there is still work left to do]]. There are missing functions to do computations on spike trains, to simulate autoregresive models, to create specialized plots, etc. These are of importance for many scientific disciplines involving statistical computations and signal processing.


=== Improve memory management ===
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours (medium)
* '''Required skills'''
: Octave, C/C++; FORTRAN API knowledge
* '''Potential mentors'''
: [https://octave.discourse.group/u/kakila KaKiLa]
-->


From profiling the interpreter, it appears that a lot of time is spending allocating and deallocating memory. A better memory management algorithm might provide some improvement.
<!--
== Better tab completion ==


=== Implement classdef classes ===
Links: [https://savannah.gnu.org/bugs/index.php?62492 https://savannah.gnu.org/bugs/index.php?62492] and [https://savannah.gnu.org/bugs/?53384 https://savannah.gnu.org/bugs/?53384]


Matlab has two kinds of classes: old style @classes and new style classdef. Octave has only implemented the old style. Although the lexer and parser have been updated to recognise the syntax for the new style classdef declarations, they currently do nothing with it. A successful project would design and implement the necessary functionality for these classes. This project is somewhat simpler than others in the interpreter group.
Description: currently pressing Tab at the Octave command prompt attempts autocompletion of all identifiers in scope (variables, functions, classdefs etc) as well as files and directories in the path. It is not context sensitive.


== Infrastructure ==
Project: Improve tab completion. For example,


There are several projects closely related to Octave but not exactly core Octave that could be worked on. They are mostly infrastructure around Octave, stuff that would help a lot.
* Typing
: load x
and then pressing tab should ideally give all loadable files and directories starting with x, not unrelated results like variables or functions.  


'''Required skills''': Various. See below.
* Typing
:cd
and tab should only give directories.


'''Difficulty''': Various. See below.
* Any file and directory names that are included in the results should include those with spaces and special characters including those that would be interpreted as operators by Octave.


'''Potential mentor''': Jordi Gutiérrez Hermoso, Carlo de Falco
* Typing commands like
: axis
or
: format
and pressing tab should give only those options relevant to that command. E.g. format can be followed by short / long / loose / compact etc but not by a file or variable. Similarly axis can be followed by ij / xy / tight / equal / actual limits etc but not by files or directories. And so on for other commands. This should be made possible for both preexisting commands and for yet-to-be-written commands without any rewriting of existing function code or documentation.


=== Finish the Agora website ===
To get more examples, see how bash completion works. You can type git or hg and then tab and it will give the list of available commands. If you type "sort --r" and then tab, it gives the list of options to sort starting with "--r", etc.


In 2009, the Mathworks decided to restrict the terms of use Matlab Central, a place dedicated to Matlab collaboration. The Mathworks forbade copyleft licenses and using the "free" code found in Matlab central on anything other than Mathworks products (e.g. forbidding from using it on Octave, even if the authors of the code wanted to allow this). Thus Octave users have no place to centrally, quickly, and conveniently share Octave code. In response to this, a website started to form, [http://agora.panocha.org.mx/ Agora Octave].
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours (medium)
* '''Required skills'''
: ???
* '''Potential mentors'''
: ???
-->


This should be relatively easy webdev in Python using [http://en.wikipedia.org/wiki/Django_%28web_framework%29 Django].
<!--
== Graphics rendering back to front sorting ==


=== Give maintenance to the Emacs octave mode ===
Several incompatibilities have been identified in how Octave plots transparent objects in 3D, causing certain transparent objects to hide opaque objects behind them even though they're not supposed to. The vast majority of them were isolated to one problem: if the objects to be drawn are rendered such that the one farthest away from the viewer is rendered first and nearer objects are rendered on top of that, then transparency would be automatically achieved, but this needs very careful coding to stay performant and to avoid rendering objects that will be overwritten fully by others. See [https://savannah.gnu.org/bugs/?57980] for a summary.


[http://en.wikipedia.org/wiki/Emacs Emacs] has an octave-mode that requires a lot of maintenance. This should also be an easy project if you already use Emacs and [http://en.wikipedia.org/wiki/Elisp elisp].
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours (medium)
* '''Required skills'''
: ???
* '''Potential mentors'''
: ???
-->


=== Improve binary packaging ===
<!--
== Symbolic package ==


We would like to be able to easily generate binary packages for Windows and Mac OS X. Right now, it's difficult and tedious to do so. Any way to help us do this in a faster way would be appreciated. Required knowledge is understanding how building binaries in Windows and Mac OS X works. Medium difficulty.
The [[Symbolic package]] provides symbolic computing and other [https://en.wikipedia.org/wiki/Computer_algebra_system computer algebra system] tools via the [https://sympy.org SymPy Python library]. GSoC projects in 2016 and 2022 improved the package.


=== Installation of packages ===
There are no specific plans for Symbolic in GSoC 2023, but improvements elsewhere that would help Symbolic include:
We would like to enhance the management of Octave-forge packages from within Octave environment. Currently there is a working (but rather monolithic) function that is used to do the job. The work would be to improve the way Octave interacts with the package server. Since the functionality is already sketched by the current function, the most important skill is software design.
* Developing the Octave-Pythonic package.
* Fix the storage of non-expressions by working with upstream SymPy: currently we rely on deprecated functionality in SymPy.
* Improvements and fixes to classdef-related issues in Octave itself.
* Developing the Octave Jupyter kernel.


'''Minimum requirements''': Ability to read and write Octave code. Minimal FTP/HTTP knowledge.
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty'''
: ~350 hours (medium)
* '''Required skills'''
: ???
* '''Potential mentors'''
: ???
-->


'''Difficulty''': Easy
= Project sizes =


== Octave-Forge packages ==
As of 2024, possible project sizes are 90 (small), 175 (medium), or 350 hours (large) <ref>https://developers.google.com/open-source/gsoc/faq#how_much_time_does_gsoc_participation_take</ref>.


=== Rewrite symbolic package ===
= Footnotes =
Octave's current [http://octave.svn.sourceforge.net/viewvc/octave/trunk/octave-forge/main/symbolic/ symbolic] package for symbolic computation is outdated, fragile and limited in its capabilities. The new symbolic package should offer better Matlab compatibility, for example handling of symbolic matrices. Like the current symbolic package, the new package could use the proven [http://www.ginac.de/ GiNaC] library for symbolic computations.


The work would be to integrate GiNaC by using Octave's objects and classes. This can be done in C++ in a way similar to Michele Martone's new [http://octave.svn.sourceforge.net/viewvc/octave/trunk/octave-forge/main/sparsersb/ sparsersb] package.
<references />


'''Required skills''': C++. Ability to understand Octave and GiNaC API documentation.
= See also =


'''Difficulty''': medium.
* https://summerofcode.withgoogle.com/
* [https://google.github.io/gsocguides/student/ GSoC Student Guide]
* [https://google.github.io/gsocguides/mentor/ GSoC Mentor Guide]
* [https://developers.google.com/open-source/gsoc/timeline GSoC Timeline]


'''Potential mentor''': Lukas Reichlin
[[Category:Summer of Code]]
[[Category:Project Ideas]]

Latest revision as of 05:22, 22 September 2024

Info icon.svg

Since 2011 the GNU Octave project has successfully mentored:

in Summer of Code (SoC) programs by Google and ESA.

Those SoC programs aim to advertise open-source software development and to attract potential new Octave developers.

Steps toward a successful application[edit]

  1. 😉💬 We want to get to know you (before the deadline). Communicate with us.
    • Join Octave Discourse or IRC for general discussion and to ask questions (Please do not use the bug tracker for general GSOC inquiries unrelated to specific bugs found with Octave.) Using a nickname is fine.
    • Show us that you're motivated to work on Octave 💻. There is no need to present an overwhelming CV 🏆; evidence of involvement with Octave is more important.
    • If you never talked to us, we will likely reject your proposal, even it looks good 🚮
  2. 👩‍🔬 Get your hands dirty.
    • We are curious about your programming skills 🚀
    • Use Octave!
      • If you come across something that does not work the way you like ➡️ try to fix that 🔧
      • Or if you find a missing function ➡️ try to implement it.
  3. 📝💡 Tell us what you are going to do.
    • Do not write just to say what project you're interested in. Be specific about what you are going to do, include links 🔗, show us you know what you are talking about 💡, and ask many smart questions 🤓
    • Remember, we are volunteer developers and not your boss 🙂
  4. 📔 Prepare your proposal with us.
    • Try to show us as early as possible a draft of your proposal 📑
    • If we see your proposal for the first time after the application deadline, it might easily contain some paragraphs not fully clear to us. Ongoing interaction will give us more confidence that you are capable of working on your project 🙂👍
    • Here’s a sample proposal outline that you can use as a reference when drafting your own application. Sample Proposal
    • Then submit the proposal following the applicable rules, e.g. for GSoC. 📨

How do we judge your application?[edit]

Depending on the mentors and SoC program there are varieties, but typically the main factors considered would be:

  • You have demonstrated interest in Octave and an ability to make substantial modifications to Octave
    The most important thing is that you've contributed some interesting code samples to judge your skills. It's OK during the application period to ask for help on how to format these code samples, which normally are Mercurial patches.
  • You showed understanding of your topic
    Your proposal should make it clear that you're reasonably well versed in the subject area and won't need all summer just to read up on it.
  • Well thought out, adequately detailed, realistic project plan
    "I'm good at this, so trust me" isn't enough. In your proposal, you should describe which algorithms you'll use and how you'll integrate with existing Octave code. You should also prepare a project timeline and goals for the midterm and final evaluations.

What you should know about Octave[edit]

GNU Octave is mostly written in C++ and its own scripting language that is mostly compatible with Matlab. There are bits and pieces of Fortran, Perl, C, awk, and Unix shell scripts here and there. In addition to being familiar with C++ and Octave's scripting language, you as successful applicant will be familiar with or able to quickly learn about Octave's infrastructure. You can't spend the whole summer learning how to build Octave or prepare a changeset and still successfully complete your project 😇

You should know:

  1. How to build Octave from its source code using the GNU build system.
  2. How to submit patches (changesets).

Suggested projects[edit]

The following suggested projects are distilled from the Projects page for the benefit of potential SoC participants. You can also look at our completed past projects, or the current | Octave Development Roadmap for more inspiration.

Info icon.svg
Do you use Octave at your working place or university? Do you have some numerical project in mind? You are always welcome to propose your own projects. If you are passionate about your project, it will be easy to find an Octave developer to mentor and guide you. Please note that for such a proposal to be successful it will almost certainly involve initiating pre-proposal discussion over at the Octave Discourse forum.

Adding more Classification classes and implementing missing methods in statistics package[edit]

Although a ClassificationKNN class was added in the latest statistics release (1.6.1), it still lacks several methods (only `predict` is available at the moment). This GSoC project aims at implementing more methods, such as crossval, cvloss, lime, loss, margin, partialDependence, plotPartialDependence, etc., as well as adding more classdefs related to classification classes, such as ClassificationGAM, ClassificationDiscriminant, ClassificationSVM, ClassificationNeuralNetwork, ClassificationNaiveBayes, etc. The statistics package, although heavily developed during the past years, still lacks a lot of classdef functionality. The scope is to implement classification classdef objects and their relevant methods in a MATLAB-compatible way.

  • Project size [?] and Difficulty
~350 hours (hard)
  • Required skills
Octave, classdef, good knowledge of statistical methods
  • Potential mentors
Andreas Bertsatos

Custom re-implementation of the texi2html (v.1.82) command line tool[edit]

Implement a compiled .oct function to relax the dependency of the pkg-octave-doc package on texi2html (v.1.82) command line tool, which is no longer maintained or further developed but also not readily available to all linux distributions. The idea is to have a `texi2html` function within the pkg-octave-doc package that will replace the functionality of the texi2html (v.1.82) command line tool. This will also help improve the speed of pkg-octave-doc processing large packages, which contain specific tags (such as @math) which are currently handled within Octave code.

  • Project size [?] and Difficulty
~350 hours (hard)
  • Required skills
Perl, C++, Octave, Texinfo, HTML
  • Potential mentors
Andreas Bertsatos


Port Chebfun to Octave and improve classdef support[edit]

Chebfun uses interpolation to approximate functions to very high accuracy, giving numerical computing that feels like symbolic computing. The software is implemented as collection of "classdef" classes and is Free and Open Source Software. However, Chebfun does not yet work with Octave, largely due to differences and issues with Octave's classdef implementation. This project has two aims: (1) make changes to the Chebfun code to make it work on Octave and (2) improve Octave's classdef functionality. Some initial steps toward to first goal can be found on this octave_dev branch. The second goal will likely involve a collaborative effort because classdef is a priority on | Octave's Development Roadmap and because other proposed projects also involve classdef.

  • Project size [?] and Difficulty
~350 hours (hard)
  • Required skills
Octave, object-oriented programming, polynomial interpolation and approximation theory, C++.
  • Potential mentors
Colin B. Macdonald





Project sizes[edit]

As of 2024, possible project sizes are 90 (small), 175 (medium), or 350 hours (large) [1].

Footnotes[edit]

See also[edit]