Summer of Code - Getting Started: Difference between revisions
Pr0m1th3as (talk | contribs) (→Suggested projects: added suggested project) Tags: Mobile edit Mobile web edit Advanced mobile edit |
(→Suggested projects: Comment out projects having no active mentor assigned.) |
||
Line 72: | Line 72: | ||
: [https://octave.discourse.group/u/pr0m1th3as Andreas Bertsatos] | : [https://octave.discourse.group/u/pr0m1th3as Andreas Bertsatos] | ||
<!-- | |||
== ode15{i,s} : Matlab Compatible DAE solvers == | == ode15{i,s} : Matlab Compatible DAE solvers == | ||
Line 85: | Line 86: | ||
* '''Potential mentors''' | * '''Potential mentors''' | ||
: Francesco Faccio, [https://octave.discourse.group/u/cdf Carlo de Falco], [https://octave.discourse.group/u/marco_caliari Marco Caliari], Jacopo Corno, [https://octave.discourse.group/u/schoeps Sebastian Schöps] | : Francesco Faccio, [https://octave.discourse.group/u/cdf Carlo de Falco], [https://octave.discourse.group/u/marco_caliari Marco Caliari], Jacopo Corno, [https://octave.discourse.group/u/schoeps Sebastian Schöps] | ||
--> | |||
<!-- | |||
== PolarAxes and Plotting Improvements == | == PolarAxes and Plotting Improvements == | ||
Line 96: | Line 99: | ||
* '''Potential mentors''' | * '''Potential mentors''' | ||
: [https://octave.discourse.group/u/rik Rik] | : [https://octave.discourse.group/u/rik Rik] | ||
--> | |||
<!-- | |||
== Table datatype == | == Table datatype == | ||
Line 107: | Line 112: | ||
* '''Required skills''' | * '''Required skills''' | ||
: Octave, C/C++ | : Octave, C/C++ | ||
* '''Potential mentors''' | |||
: ??? | |||
--> | |||
<!-- | |||
== TISEAN package == | == TISEAN package == | ||
Line 118: | Line 127: | ||
* '''Potential mentors''' | * '''Potential mentors''' | ||
: [https://octave.discourse.group/u/kakila KaKiLa] | : [https://octave.discourse.group/u/kakila KaKiLa] | ||
--> | |||
<!-- | |||
== Better tab completion == | == Better tab completion == | ||
Line 145: | Line 156: | ||
To get more examples, see how bash completion works. You can type git or hg and then tab and it will give the list of available commands. If you type "sort --r" and then tab, it gives the list of options to sort starting with "--r", etc. | To get more examples, see how bash completion works. You can type git or hg and then tab and it will give the list of available commands. If you type "sort --r" and then tab, it gives the list of options to sort starting with "--r", etc. | ||
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty''' | |||
: ~350 hours (medium) | |||
* '''Required skills''' | |||
: ??? | |||
* '''Potential mentors''' | |||
: ??? | |||
--> | |||
<!-- | |||
== Graphics rendering back to front sorting == | == Graphics rendering back to front sorting == | ||
Several incompatibilities have been identified in how Octave plots transparent objects in 3D, causing certain transparent objects to hide opaque objects behind them even though they're not supposed to. The vast majority of them were isolated to one problem: if the objects to be drawn are rendered such that the one farthest away from the viewer is rendered first and nearer objects are rendered on top of that, then transparency would be automatically achieved, but this needs very careful coding to stay performant and to avoid rendering objects that will be overwritten fully by others. See [https://savannah.gnu.org/bugs/?57980] for a summary. | Several incompatibilities have been identified in how Octave plots transparent objects in 3D, causing certain transparent objects to hide opaque objects behind them even though they're not supposed to. The vast majority of them were isolated to one problem: if the objects to be drawn are rendered such that the one farthest away from the viewer is rendered first and nearer objects are rendered on top of that, then transparency would be automatically achieved, but this needs very careful coding to stay performant and to avoid rendering objects that will be overwritten fully by others. See [https://savannah.gnu.org/bugs/?57980] for a summary. | ||
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty''' | |||
: ~350 hours (medium) | |||
* '''Required skills''' | |||
: ??? | |||
* '''Potential mentors''' | |||
: ??? | |||
--> | |||
<!-- | |||
== Symbolic package == | == Symbolic package == | ||
Line 159: | Line 187: | ||
* Improvements and fixes to classdef-related issues in Octave itself. | * Improvements and fixes to classdef-related issues in Octave itself. | ||
* Developing the Octave Jupyter kernel. | * Developing the Octave Jupyter kernel. | ||
* '''Project size''' [[#Project sizes | [?]]] and '''Difficulty''' | |||
: ~350 hours (medium) | |||
* '''Required skills''' | |||
: ??? | |||
* '''Potential mentors''' | |||
: ??? | |||
--> | |||
= Project sizes = | = Project sizes = |
Revision as of 13:59, 4 March 2023
Since 2011 the GNU Octave project has successfully mentored:
in Summer of Code (SoC) programs by Google and ESA.
Those SoC programs aim to advertise open-source software development and to attract potential new Octave developers.
Steps toward a successful application
- 😉💬 We want to get to know you (before the deadline). Communicate with us.
- Join Octave Discourse or IRC. Using a nickname is fine.
- Show us that you're motivated to work on Octave 💻. There is no need to present an overwhelming CV 🏆; evidence of involvement with Octave is more important.
- If you never talked to us, we will likely reject your proposal, even it looks good 🚮
- 👩🔬 Get your hands dirty.
- We are curious about your programming skills 🚀
- Your application will be much stronger if you fix Octave bugs or submit patches before or during the application period.
- You can take a look at the short projects for some simple bugs to start with.
- Use Octave!
- If you come across something that does not work the way you like ➡️ try to fix that 🔧
- Or if you find a missing function ➡️ try to implement it.
- We are curious about your programming skills 🚀
- 📝💡 Tell us what you are going to do.
- Do not write just to say what project you're interested in. Be specific about what you are going to do, include links 🔗, show us you know what you are talking about 💡, and ask many smart questions 🤓
- Remember, we are volunteer developers and not your boss 🙂
- 📔 Prepare your proposal with us.
- Try to show us as early as possible a draft of your proposal 📑
- If we see your proposal for the first time after the application deadline, it might easily contain some paragraphs not fully clear to us. Ongoing interaction will give us more confidence that you are capable of working on your project 🙂👍
- Then submit the proposal following the applicable rules, e.g. for GSoC. 📨
How do we judge your application?
Depending on the mentors and SoC program there are varieties, but typically the main factors considered would be:
- You have demonstrated interest in Octave and an ability to make substantial modifications to Octave
- The most important thing is that you've contributed some interesting code samples to judge your skills. It's OK during the application period to ask for help on how to format these code samples, which normally are Mercurial patches.
- You showed understanding of your topic
- Your proposal should make it clear that you're reasonably well versed in the subject area and won't need all summer just to read up on it.
- Well thought out, adequately detailed, realistic project plan
- "I'm good at this, so trust me" isn't enough. In your proposal, you should describe which algorithms you'll use and how you'll integrate with existing Octave code. You should also prepare a project timeline and goals for the midterm and final evaluations.
What you should know about Octave
GNU Octave is mostly written in C++ and its own scripting language that is mostly compatible with Matlab. There are bits and pieces of Fortran, Perl, C, awk, and Unix shell scripts here and there. In addition to being familiar with C++ and Octave's scripting language, you as successful applicant will be familiar with or able to quickly learn about Octave's infrastructure. You can't spend the whole summer learning how to build Octave or prepare a changeset and still successfully complete your project 😇
You should know:
- How to build Octave from its source code using the GNU build system.
- Read in this wiki: Developer FAQ, Building
- Tools to know: gcc, make
- How to submit patches (changesets).
- Read in this wiki: Contribution guidelines, Mercurial
- Tools to know: Mercurial (hg), git
Suggested projects
The following suggested projects are distilled from the Projects page for the benefit of potential SoC participants. You can also look at our completed past projects for more inspiration.
Adding regression GAM and kNN classification functionality in statistics package
Generalized Additive Models and k-Nearest Neighbor algorithms are two important tools in advanced statistics used for regression and classification problems, respectively. The statistics package, although heavily developed during the past year, still lacks any functionality regarding these two algorithms. The scope is to implement both the respective class def objects as well as the relevant functions in a MATLAB compatible way.
- Project size [?] and Difficulty
- ~350 hours (medium)
- Required skills
- Octave, familiarity with statistical methods
- Potential mentors
Project sizes
Since GSoC 2022 there exist two project sizes[1][2]:
- ~175 hours (~12 weeks, Jun 13 - Sept 12)
- ~350 hours (~22 weeks, Jun 13 - Nov 21)