

Writing High Performance m-files

OctConf 2015
Darmstadt, Germany

Sep. 21, 2015

Overview

● Motivation for speed optimization
● Experimental approach

– Design, Build, Test

● Design for performance
– Structure of Octave

– 4 General Performance Principles

● Testing performance
– Goal and pitfalls of benchmarking

– Benchmarking approaches in Octave

Don’t Optimize

● Life is short,
● Death is long,
● Spend your time

wisely

Really, Don’t Optimize

● Base Google salary in Silicon Valley is $128K,
approximately $65/hr

● More expensive to learn and implement
optimization techniques than to
– Buy faster CPUs

– Buy more memory

– “Rent” more hardware (AWS)

When to consider performance?

1) Doesn’t complete in a reasonable period

2) Real-time control

3) Core developer

Coding Priorities

1. Get it working

2. Make it readable

These two goals are often in conflict with better
performance.

Engineering Performance

● Experimental approach to better performance

Design Test

Build

Structure of Octave

● Octave is an interpreted language
● Octave is a thin translation layer between

m-files and powerful existing code libraries

X = fft (x);
DC = X(0);
...

Octave

BLAS LAPACK libc FFTW

Core Interpreter Operations

1. Parse m-file text

2. Gather inputs, outputs

3. Dispatch to correct library

y = sin (x);

A * B’

● Previously computed as 2 operations

1 TMP = Transpose (B)

2 ANS = A * TMP

● Now dispatched to BLAS as a single function
call with appropriate flag settings

● Performance increase of ~30%

4 General Design Principles

1. Avoid parsing/translation

2. Use built-in functions

3. Manage memory

4. Stay within interpreter

Benchmarking
a.k.a. Testing

RunTime=f (x1, x2,x3, ... , xn)

• Runtime is a complex function of multiple inputs

• Objective is to calculate partial derivative with
respect to just code changes

∂
∂ xk

f (x1,x2, x3,... , xn)

Benchmarking Best Practices

● Use data sets that match expected inputs
● Disable CPU frequency scaling
● Run on lightly loaded computer with enough

memory to prevent swapping
● Run benchmarks multiple times; Use average

and standard deviation to assess quality of
benchmarking data

Pareto Principle

● The 80/20 rule
● Nearly always, 1 or 2 issues are the cause of all

problems
● Use Pareto as a stopping criterion for

optimization

Benchmarking in Octave

● tic / toc
● cputime
● profiler

Example BM Script

N = 50;

sz = [40, 40];

x = rand (sz);

y = zeros (sz);

bm = zeros (N, 1);

for i = 1:N

 tic;

 y = ftan (x);

 bm(i) = toc;

endfor

ftan () demonstration function

Sample function to be optimized

function y = ftan (x)

 for i = 1:numel (x)

 y(i) = sin (x(i)) / cos (x(i));

 endfor

endfunction

Baseline Performance

0.15062

0.14942

0.14847

0.14894

0.14864

...

● Mean = 0.148
● STD = .001

arrayfun ()

● Eliminates loops for single-valued (non-vector)
functions
fcn = @(x) sin (x) / cos (x);

for i = 1:N

 tic;

 y = arrayfun (fcn, x);

 bm(i) = toc;

endfor

arrayfun () performance

● Mean = 0.1220
● STD = .0006
● % change = -18%
● Not bad, but not outstanding
● In the future, this may improve

Vectorization

● Parse just once, eliminates multiple translations
● “Win-Win”

– Increases performance drastically

– Makes code more readable

Vectorized ftan ()

function y = ftan_vec (x)

 y = sin (x) ./ cos (x);

endfunction

● Remove looping structures
● Use vector operators, e.g., ‘./’

Vectorized Results

● Mean = .00039
● STD = .00002
● % change = -99.7%
● Well worth doing

Principle 1: Avoid
Parsing/Translation

● Loops are abysmally slow
– Band-aids such as arrayfun or cellfun don’t really

work

– Vectorization is most important strategy
● Speeds up code and makes it more readable
● ~100X improvement

Principle 2: Use Built-in Functions

● Don’t re-invent the wheel
● Built-in functions are often in a compiled

language which is much faster
● Any m-file implementations have been

optimized more than you can easily accomplish

Benchmark tan ()

function y = ftan_tan (x)

 y = tan (x);

endfunction

● Mean = .00028

● STD = .00002

● % change over ftan = -99.8%

● % change over vectorized ftan = -26%

Benchmark Summary

Function Relative Speed

tan () 1

vectorized ftan 1.36

arrayfun 436

looping ftan 529

Memory Management

● General Problem
– Octave hides details like garbage collection

– BUT, Octave is not an optimizing compiler

– Still necessary to manage memory and avoid bad
code constructs

● Must have enough memory to avoid swapping

Growing Arrays

● Forces multiple memory allocations, fragments
system memory
function y = ftan_mem (x)

 y = [];

 for i = 1:numel (x)

 y(end+1) = sin (x(i)) / cos (x(i));

 endfor

 y = reshape (y, size (x));

endfunction

Pre-Declare Arrays

● Single memory allocation
function y = ftan_mem_declare (x)

 y = zeros (size (x));

 for i = 1:numel (x)

 y(i) = sin (x(i)) / cos (x(i));

 endfor

endfunction

Memory Benchmarking

Method RunTime

Array growth .167

Pre-declared array .143

% change -14%

In-Place Operators 1

A = A + 1

is equivalent to

TMP = A + 1

A = TMP

In-Place Operators 2

A += 1

Does not create a temporary array!

In-Place Benchmarks

Method RunTime % Change Relative RunTime

A = A + 1 .111 -- 1

A++ .110 -1% .99

++A .111 0% 1

A += 1 .041 -60% .40

● Octave core functions already use in-place operators
● Use built-in functions and get optimization for free

Copy-on-Write (COW)

● Octave conserves memory by using
Copy-on-Write

● A copy of a variable, such as y = x, creates a
link to the original variable without using
additional memory

● Modifications to a copy of a variable, such as
y = y + 1, require allocation of new memory

Accidental Memory Consumption

function retval = tst_cow (x)

 tmp = x + 1;

 retval = 2 * tmp;

endfunction

● Use 3*sizeof (x) memory to store x, tmp, and retval

● Minimum memory allocation of 2*sizeof (x) is possible through
simple recoding

Avoiding COW I

● Strategy 1: Avoid COW by using a single
intermediate variable for all calculations
function retval = tst_cow (x)

 tmp = x + 1;

 tmp = 2 * tmp;

 retval = tmp;

endfunction

Avoiding COW II

● Strategy 2: Avoid COW by using the output
variable for intermediate calculations
function retval = tst_cow (x)

 retval = x + 1;

 retval = 2 * retval;

endfunction

Principle 3 : Manage memory

● Pre-declare large variables
● Clear large, unnecessary variables before

calculations begin
● Use in-place operators
● Avoid accidental COW variables

4 General Design Principles

1. Avoid parsing/translation

2. Use built-in functions

3. Manage memory

4. Stay within interpreter

Performance Expectations

● Vectorization : ~100X
● Built-in Functions : ~2-100X
● Memory Management : ~25%
● Stay within interpreter : < 10%

What if it isn’t enough?

● Use the 80/20 rule
● Accelerate only the bottleneck
● Look at the external code interface in

Appendix A

