IGDK Munich — Graz

with Nonsmooth Structures

Optimization and Numerical Analysis for Partial Differential Equations

The level-set Package for GNU Octave

Daniel Kraft

The Level-Set Method for Shape Optimisation

For a level-set function ¢: R” x [0, c0) — R, we define:
Qr={xeR"| p(x,t) <0}, l=4{xeR"| ¢(x,t) =0}

Evolution of {25 C R" by the speed method:

Propagation in time with the level-set equation:
¢+ F(x) Vo] =0, ¢(.0)=¢o (1)
y F: R" — R Is a scalar speed field.
Left: F(a) <0< F(b) < F(c)

See (3] for a thorough, practical introduction.

Basic Operations with Level-Set Functions

Set predicates: Set operations:
» 1s_1inside » 1s_complement
» 1s_1sempty, 1s_1issubset » 1s_union, 1s_intersect
» 1s_equal, 1s_disjoint » 1s _setdiff, 1s_setxor

Basic shapes with 1s_genbasic and the set operations.

Composite Fast Marching

-

Applying (3) once for F > 0 and once for F < 0, we can evolve shapes for
arbitrary speed fields: Composite Fast Marching [2]

This 1s also beneficial If we need shapes for the same F and different times.

Basic usage outline:

nb = 1s_nb_from_geom (g, phiO); J optional with struct g
d = 1ls_solve_stationary (phiO, F, h, nb);
phiT = ls_extract_solution (t, d, phiO, F);

-4 -2 0 2 4 -4 -2 0

Descent Recording and Replay

The framework around so_run_descent allows also for logging and replay:

so_save_descent Keep records of all descent iterations.
so_replay_descent Replay steps without recomputation.
so_explore_descent Interactively step through the descent.

References

Computing the Time-Evolution of Shapes

Solution of (1) with time stepping: 1s_time_step

Alternative idea based on the Eikonal equation:

F(x)|Vdy(x)| = 1 outside of
This yields an F-induced distance to the |

We can then use the Hopf-Lax formulas |
¢(x, t) = inf {¢o(y)

S?t::‘LXQEIRn

[}::'{XQEIRH

QO, do:OOﬂ/_()U_QQ (2)

nitial geometry.

1], [2]:

d(x,y) <t}

db(x) < t} (3)
do(x) = t}

If F > 0 1s not the case, one can split the domain and combine results.

Geometry in 2D

ls_find_geometry:. Geometric information about 2 and [as struct.

msh-compatible triangle mesh:

phi = 1s_normalise (phi, h);

g = 1ls_find_geometry (phi, h);
g = 1ls_absolute_geom (g, X, Y)
mesh = 1ls_build_mesh (g, phi);

Distance Functions

i

b

it

Solution of (2) via Sethian’s Fast Marching Method [3]: fastmarching

For constant speed F = 1, this yields distance functions:
» Distance to 2: 1s_distance_fcn and 1s_signed_distance
» Hausdorff distance of two domains: 1s_hausdorff_dist

Gradient Descent for Shape Optimisation

General descent algorithm based on level sets:

Start with an initial £2¢ and ¢y.

SO A W=

Compute shape derivative (usually on the boundary).
Extend i1t to a descent speed field F on £2.

. BEvolve (25 along F for various times, can be done in parallel.
Apply line search rule (e. g., Armijo) and perform step.
Repeat until sufficient reduction of the cost or convergence.

Generic, callback-based implementation: so_run_descent

(Geometric constraints:

il

Initial
Solution

» Set F = 0 on frozen regions: 1s_enforce_speed
» Projection of the shape after a step: 1s_enforce

[1] D. Kraft. A Hopf-Lax Formula for the Time Evolution of the Level-Set Equation and a New Approach to Shape Sensitivity Analysis. Preprint IGDK-2015-18,
https://igdk1754 .ma.tum.de/foswiki/pub/IGDK1754/Preprints/Kraft_2015A.pdf. Submitted to: Interfaces and Free Boundaries.

2] D. Kraft. A Level-Set Framework for Shape Optimisation. PhD thesis, University of Graz, 2015.

[3] J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge, second edn., 1999.

der Bundeswehr
.I.I_m Universitdt jﬁ Mtinchen

TU

raZm

https://igdk1754.ma.tum.de/foswiki/pub/IGDK1754/Preprints/Kraft_2015A.pdf

