
IGDK Munich – Graz

Optimization and Numerical Analysis for Partial Differential Equations
with Nonsmooth Structures

The level-set Package for GNU Octave
Daniel Kraft

The Level-Set Method for Shape Optimisation

For a level-set function φ : Rn × [0,∞)→ R, we define:

Ωt = {x ∈ Rn | φ(x , t) < 0} , Γt = {x ∈ Rn | φ(x , t) = 0}

Evolution of Ω0 ⊂ Rn by the speed method:

a

b

c
Propagation in time with the level-set equation:

φt + F (x) |∇φ| = 0, φ(·, 0) = φ0 (1)

F : Rn → R is a scalar speed field.
Left: F (a) < 0 < F (b) < F (c)

See [3] for a thorough, practical introduction.

Basic Operations with Level-Set Functions
Set predicates:
I ls_inside
I ls_isempty, ls_issubset
I ls_equal, ls_disjoint

Set operations:
I ls_complement
I ls_union, ls_intersect
I ls_setdiff, ls_setxor

Basic shapes with ls_genbasic and the set operations.

Composite Fast Marching

Applying (3) once for F ≥ 0 and once for F ≤ 0, we can evolve shapes for
arbitrary speed fields: Composite Fast Marching [2]

This is also beneficial if we need shapes for the same F and different times.

Basic usage outline:

nb = ls_nb_from_geom (g, phi0); % optional with struct g
d = ls_solve_stationary (phi0, F, h, nb);
phiT = ls_extract_solution (t, d, phi0, F);

-4 -2 0 2 4

-4

-2

0

2

4

-4

-2

0

2

-4 -2 0 2 4

-4

-2

0

2

4

0

0.2

0.4

0.6

0.8

1

Descent Recording and Replay

The framework around so_run_descent allows also for logging and replay:

so_save_descent Keep records of all descent iterations.
so_replay_descent Replay steps without recomputation.
so_explore_descent Interactively step through the descent.

Computing the Time-Evolution of Shapes

Solution of (1) with time stepping: ls_time_step

Alternative idea based on the Eikonal equation:

F (x) |∇d0(x)| = 1 outside of Ω0, d0 = 0 on Γ0 ∪Ω0 (2)

This yields an F -induced distance to the initial geometry.

We can then use the Hopf-Lax formulas [1], [2]:
φ(x , t) = inf {φ0(y) | d (x , y) ≤ t}

Ωt = {x ∈ Rn | d0(x) < t}
Γt = {x ∈ Rn | d0(x) = t}

(3)

If F ≥ 0 is not the case, one can split the domain and combine results.

Geometry in 2D

ls_find_geometry: Geometric information about Ω and Γ as struct.

msh-compatible triangle mesh:

phi = ls_normalise (phi, h);
g = ls_find_geometry (phi, h);
g = ls_absolute_geom (g, X, Y);
mesh = ls_build_mesh (g, phi);

Distance Functions

Solution of (2) via Sethian’s Fast Marching Method [3]: fastmarching

For constant speed F = 1, this yields distance functions:
I Distance to Ω: ls_distance_fcn and ls_signed_distance
I Hausdorff distance of two domains: ls_hausdorff_dist

Gradient Descent for Shape Optimisation

General descent algorithm based on level sets:
1. Start with an initial Ω0 and φ0.
2. Compute shape derivative (usually on the boundary Γ).
3. Extend it to a descent speed field F on Ω.
4. Evolve Ω0 along F for various times, can be done in parallel.
5. Apply line search rule (e. g., Armijo) and perform step.
6. Repeat until sufficient reduction of the cost or convergence.

Generic, callback-based implementation: so_run_descent

Initial

Solution

Geometric constraints:
I Set F = 0 on frozen regions: ls_enforce_speed
I Projection of the shape after a step: ls_enforce

References
[1] D. Kraft. A Hopf-Lax Formula for the Time Evolution of the Level-Set Equation and a New Approach to Shape Sensitivity Analysis. Preprint IGDK-2015-18,

https://igdk1754.ma.tum.de/foswiki/pub/IGDK1754/Preprints/Kraft_2015A.pdf. Submitted to: Interfaces and Free Boundaries.

[2] D. Kraft. A Level-Set Framework for Shape Optimisation. PhD thesis, University of Graz, 2015.

[3] J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge, second edn., 1999.

https://igdk1754.ma.tum.de/foswiki/pub/IGDK1754/Preprints/Kraft_2015A.pdf

