

IGDK Munich – Graz

Optimization and Numerical Analysis for Partial Differential Equations with Nonsmooth Structures

The level-set Package for GNU Octave Daniel Kraft

The Level-Set Method for Shape Optimisation

For a level-set function $\phi \colon \mathbb{R}^n \times [0, \infty) \to \mathbb{R}$, we define: $\Omega_t = \{x \in \mathbb{R}^n \mid \phi(x, t) < 0\}, \ \Gamma_t = \{x \in \mathbb{R}^n \mid \phi(x, t) = 0\}$

Evolution of $\Omega_0 \subset \mathbb{R}^n$ by the speed method:

Propagation in time with the level-set equation: $\phi_t + F(x) |\nabla \phi| = 0, \quad \phi(\cdot, 0) = \phi_0 \quad (1)$ **Computing the Time-Evolution of Shapes**

Solution of (1) with time stepping: ls_time_step

Alternative idea based on the Eikonal equation:

 $F(x) |
abla d_0(x)| = 1$ outside of Ω_0 , $d_0 = 0$ on $\Gamma_0 \cup \Omega_0$

This yields an F-induced distance to the initial geometry.

We can then use the Hopf-Lax formulas [1], [2]:

$F : \mathbb{R}^n \to \mathbb{R}$ is a scalar speed field. Left: F(a) < 0 < F(b) < F(c)

See [3] for a thorough, practical introduction.

Basic Operations with Level-Set Functions

Set predicates:

- > ls_inside
- ls_isempty, ls_issubset
- > ls_equal, ls_disjoint

Set operations:

- ls_complement
- ls_union, ls_intersect
- > ls_setdiff, ls_setxor

Basic shapes with ls_genbasic and the set operations.

$$\begin{split} \phi(x,t) &= \inf \left\{ \phi_0(y) \mid d(x,y) \leq t \right\} \\ \Omega_t &= \left\{ x \in \mathbb{R}^n \mid d_0(x) < t \right\} \\ \Gamma_t &= \left\{ x \in \mathbb{R}^n \mid d_0(x) = t \right\} \end{split}$$

(3)

(2)

If $F \ge 0$ is not the case, one can split the domain and combine results.

Geometry in 2D

<code>ls_find_geometry: Geometric information</code> about \varOmega and \varGamma as struct.

msh-compatible triangle mesh:

phi = ls_normalise (phi, h); g = ls_find_geometry (phi, h); g = ls_absolute_geom (g, X, Y); mesh = ls_build_mesh (g, phi);

Distance Functions

Solution of (2) via Sethian's Fast Marching Method [3]: fastmarching

For constant speed F = 1, this yields distance functions:

Composite Fast Marching

Applying (3) once for $F \ge 0$ and once for $F \le 0$, we can evolve shapes for arbitrary speed fields: Composite Fast Marching [2]

This is also beneficial if we need shapes for the same F and different times.

Basic usage outline:

nb = ls_nb_from_geom (g, phi0); % optional with struct g d = ls_solve_stationary (phi0, F, h, nb); phiT = ls_extract_solution (t, d, phi0, F);

- Distance to Ω : ls_distance_fcn and ls_signed_distance
- Hausdorff distance of two domains: ls_hausdorff_dist

Gradient Descent for Shape Optimisation

General descent algorithm based on level sets:

- 1. Start with an initial Ω_0 and ϕ_0 .
- 2. Compute shape derivative (usually on the boundary Γ).
- 3. Extend it to a descent speed field F on Ω .
- 4. Evolve Ω_0 along F for various times, can be done in parallel.
- 5. Apply line search rule (e. g., Armijo) and perform step.
- 6. Repeat until sufficient reduction of the cost or convergence.

Generic, callback-based implementation: so_run_descent

Descent Recording and Replay

The framework around so_run_descent allows also for logging and replay:

so_save_descent Keep records of all descent iterations.
so_replay_descent Replay steps without recomputation.
so_explore_descent Interactively step through the descent.

References

Geometric constraints:

- Set F = 0 on frozen regions: ls_enforce_speed
- Projection of the shape after a step: ls_enforce

[1] D. Kraft. A Hopf-Lax Formula for the Time Evolution of the Level-Set Equation and a New Approach to Shape Sensitivity Analysis. Preprint IGDK-2015-18, https://igdk1754.ma.tum.de/foswiki/pub/IGDK1754/Preprints/Kraft_2015A.pdf. Submitted to: Interfaces and Free Boundaries.

[2] D. Kraft. A Level-Set Framework for Shape Optimisation. PhD thesis, University of Graz, 2015.

[3] J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolving interfaces in computer vision, and materials science. Cambridge University Press, Cambridge, second edn., 1999.

