Writing High Performance m-files

OctConf 2015
Darmstadt, Germany
Sep. 21, 2015

Overview

Motivation for speed optimization

Experimental approach
- Design, Build, Test
Design for performance

— Structure of Octave
- 4 General Performance Principles
Testing performance

- Goal and pitfalls of benchmarking
- Benchmarking approaches in Octave

Don’t Optimize

 Life Is short,
* Death Is long,

e Spend your time
wisely

Really, Don’t Optimize

e Base Google salary in Silicon Valley is $128K,
approximately $65/hr

* More expensive to learn and implement
optimization techniques than to

- Buy faster CPUs
- Buy more memory
- “Rent” more hardware (AWS)

When to consider performance?

1) Doesn’t complete in a reasonable period

2) Real-time control
3) Core developer

Coding Priorities

1. Get it working
2. Make It readable

Wil

These two goals are often in conflict with better
performance.

Engineering Performance

* Experimental approach to better performance

Test

Build

Structure of Octave

* Octave Is an interpreted language

» Octave Is a thin translation layer between
m-files and powerful existing code libraries

X = fft (x);
DC = X(0);

BLAS LAPACK libc FFTW

Core Interpreter Operations

y = sin (X);

1. Parse m-file text
2. Gather Inputs, outputs
3. Dispatch to correct library

A* B’

* Previously computed as 2 operations
1 TMP = Transpose (B)
2 ANS =A*TMP

- Now dispatched to BLAS as a single function
call with appropriate flag settings

- Performance increase of ~30%

4 General Design Principles

1. Avoid parsing/translation
2. Use built-in functions

3. Manage memory

4. Stay within interpreter

Benchmarking

a.k.a. Testing

- Runtime Is a complex function of multiple inputs

RunTime={f (xl,xz,x&...,xn)

- Objective is to calculate partial derivative with
respect to just code changes

Benchmarking Best Practices

Use data sets that match expected inputs
Disable CPU frequency scaling

Run on lightly loaded computer with enough
memory to prevent swapping

Run benchmarks multiple times; Use average
and standard deviation to assess quality of
benchmarking data

Pareto Principle

e The 80/20 rule

* Nearly always, 1 or 2 issues are the cause of all
problems

* Use Pareto as a stopping criterion for
optimization

Benchmarking in Octave

* tic / toc
e cputime
 profiler

Example BM Script

N = 50,
sz = [40, 40];

X = rand (sz);
y = zeros (sz);

bm = zeros (N, 1);

for i = 1:N
tic;
y = ftan (x);
bm(i) = toc;
endfor

ftan () demonstration function

Sample function to be optimized

function y = ftan (Xx)
for 1 = 1:numel (X)
y(1)
endfor

sin (x(i)) / cos (x(i));

endfunction

Baseline Performance

0.15062
0.14942
0.14847
0.14894
0.14864

e Mean =0.148
e« STD =.001

arrayfun ()

* Eliminates loops for single-valued (non-vector)
functions

fcn = @(x) sin (x) / cos (Xx);

for 1 = 1:N
tic;
y = arrayfun (fcn, Xx);
bm(1i) = toc;

endfor

arrayfun () performance

Mean = 0.1220

STD =.0006

% change =-18%

Not bad, but not outstanding
In the future, this may improve

Vectorization

* Parse just once, eliminates multiple translations
e “WIn-Win”

- Increases performance drastically

- Makes code more readable

Vectorized ftan ()

function y = ftan_vec (X)
y = sin (x) ./ cos (X);
endfunction

 Remove looping structures
» Use vector operators, e.g., “./

Vectorized Results

Mean = .00039
STD =.00002

% change =-99.7%
Well worth doing

Principle 1: Avoid
Parsing/Translation

* Loops are abysmally slow

- Band-aids such as arrayfun or cellfun don’t really
work

- Vectorization iIs most important strategy

e Speeds up code and makes it more readable
e ~100X improvement

Principle 2: Use Built-in Functions

e Don’t re-invent the wheel

 Built-in functions are often in a compiled
language which is much faster

* Any m-file implementations have been
optimized more than you can easily accomplish

Benchmark tan ()

function y = ftan_tan (x)
y = tan (X);

endfunction

Mean = .00028

STD =.00002

% change over ftan = -99.8%

% change over vectorized ftan = -26%

Benchmark Summary

Function Relative Speed
tan () 1

vectorized ftan 1.36

arrayfun 436

looping ftan 529

Memory Management

e General Problem

- Octave hides details like garbage collection
- BUT, Octave Is not an optimizing compiler

- Still necessary to manage memory and avoid bad
code constructs

 Must have enough memory to avoid swapping

Growing Arrays

* Forces multiple memory allocations, fragments
system memory

function y = ftan_mem (Xx)
y = [1I;
for 1 = 1:numel (X)
y(end+1l) = sin (x(1)) / cos (x(1));
endfor
y = reshape (y, size (X));

endfunction

Pre-Declare Arrays

* Single memory allocation
function y = ftan_mem_declare (Xx)
y = zeros (size (x));
for 1 = 1:numel (Xx)
y(1i) = sin (x(1)) / cos (x(1)),
endfor

endfunction

Memory Benchmarking

Method RunTime
Array growth 167
Pre-declared array 143

% change -14%

In-Place Operators 1

A=A-+1
IS equivalent to
T™MP = A+ 1

A = TMP

In-Place Operators 2

A +=1

Does not create a temporary array!

Method
A=A+1
A++

++A
A+=1

In-Place Benchmarks

RunTime % Change Relative RunTime
111 -- 1

110 -1% .99

111 0% 1

041 -60% 40

» Octave core functions already use in-place operators
» Use built-in functions and get optimization for free

Copy-on-Write (COW)

» Octave conserves memory by using
Copy-on-Write

* A copy of a variable, such as y = x, creates a
link to the original variable without using
additional memory

* Modifications to a copy of a variable, such as
y =y + 1, require allocation of new memory

Accidental Memory Consumption

function retval = tst_cow (Xx)
tmp = x + 1,
retval = 2 * tmp;
endfunction
« Use 3*sizeof (xX) memory to store x, tmp, and retval

 Minimum memory allocation of 2*sizeof (x) is possible through
simple recoding

Avoiding COW |

» Strategy 1: Avoid COW by using a single
Intermediate variable for all calculations

function retval = tst_cow (Xx)
tmp = x + 1;
tmp = 2 * tmp;
retval = tmp;

endfunction

Avoiding COW I

o Strategy 2: Avoid COW by using the output
variable for intermediate calculations

function retval = tst_cow (Xx)
retval = x + 1;
retval = 2 * retval;

endfunction

Principle 3 : Manage memory

* Pre-declare large variables

» Clear large, unnecessary variables before
calculations begin

e Use In-place operators
* Avoid accidental COW variables

4 General Design Principles

1. Avoid parsing/translation
2. Use built-in functions

3. Manage memory

4. Stay within interpreter

Performance Expectations

Vectorization : ~100X

Built-in Functions : ~2-100X
Memory Management : ~25%
Stay within interpreter : < 10%

What If it isn’t enough?

» Use the 80/20 rule
» Accelerate only the bottleneck

e Look at the external code interface In
Appendix A

