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Overview

Motivation for speed optimization

Experimental approach
- Design, Build, Test
Design for performance

— Structure of Octave
- 4 General Performance Principles
Testing performance

- Goal and pitfalls of benchmarking
- Benchmarking approaches in Octave



Don’t Optimize

 Life Is short,
* Death Is long,

e Spend your time
wisely




Really, Don’t Optimize

e Base Google salary in Silicon Valley is $128K,
approximately $65/hr

* More expensive to learn and implement
optimization techniques than to

- Buy faster CPUs
- Buy more memory
- “Rent” more hardware (AWS)




When to consider performance?

1) Doesn’t complete in a reasonable period

2) Real-time control
3) Core developer



Coding Priorities

1. Get it working
2. Make It readable

Wil

These two goals are often in conflict with better
performance.



Engineering Performance

* Experimental approach to better performance

Test

Build



Structure of Octave

* Octave Is an interpreted language

» Octave Is a thin translation layer between
m-files and powerful existing code libraries

X = fft (x);
DC = X(0);

BLAS LAPACK libc FFTW




Core Interpreter Operations

y = sin (X);

1. Parse m-file text
2. Gather Inputs, outputs
3. Dispatch to correct library



A* B’

* Previously computed as 2 operations
1 TMP = Transpose (B)
2 ANS =A*TMP

- Now dispatched to BLAS as a single function
call with appropriate flag settings

- Performance increase of ~30%



4 General Design Principles

1. Avoid parsing/translation
2. Use built-in functions

3. Manage memory

4. Stay within interpreter



Benchmarking

a.k.a. Testing

- Runtime Is a complex function of multiple inputs

RunTime={f (xl,xz,x&...,xn)

- Objective is to calculate partial derivative with
respect to just code changes



Benchmarking Best Practices

Use data sets that match expected inputs
Disable CPU frequency scaling

Run on lightly loaded computer with enough
memory to prevent swapping

Run benchmarks multiple times; Use average
and standard deviation to assess quality of
benchmarking data



Pareto Principle

e The 80/20 rule

* Nearly always, 1 or 2 issues are the cause of all
problems

* Use Pareto as a stopping criterion for
optimization



Benchmarking in Octave

* tic / toc
e cputime
 profiler



Example BM Script

N = 50,
sz = [40, 40];

X = rand (sz);
y = zeros (sz);

bm = zeros (N, 1);

for i = 1:N
tic;
y = ftan (x);
bm(i) = toc;
endfor



ftan () demonstration function

Sample function to be optimized

function y = ftan (Xx)
for 1 = 1:numel (X)
y(1)
endfor

sin (x(i)) / cos (x(i));

endfunction



Baseline Performance

0.15062
0.14942
0.14847
0.14894
0.14864

e Mean =0.148
e« STD =.001



arrayfun ()

* Eliminates loops for single-valued (non-vector)
functions

fcn = @(x) sin (x) / cos (Xx);

for 1 = 1:N
tic;
y = arrayfun (fcn, Xx);
bm(1i) = toc;

endfor



arrayfun () performance

Mean = 0.1220

STD =.0006

% change =-18%

Not bad, but not outstanding
In the future, this may improve



Vectorization

* Parse just once, eliminates multiple translations
e “WIn-Win”

- Increases performance drastically

- Makes code more readable



Vectorized ftan ()

function y = ftan_vec (X)
y = sin (x) ./ cos (X);
endfunction

 Remove looping structures
» Use vector operators, e.g., “./



Vectorized Results

Mean = .00039
STD =.00002

% change =-99.7%
Well worth doing




Principle 1: Avoid
Parsing/Translation

* Loops are abysmally slow

- Band-aids such as arrayfun or cellfun don’t really
work

- Vectorization iIs most important strategy

e Speeds up code and makes it more readable
e ~100X improvement



Principle 2: Use Built-in Functions

e Don’t re-invent the wheel

 Built-in functions are often in a compiled
language which is much faster

* Any m-file implementations have been
optimized more than you can easily accomplish




Benchmark tan ()

function y = ftan_tan (x)
y = tan (X);

endfunction

Mean = .00028

STD =.00002

% change over ftan = -99.8%

% change over vectorized ftan = -26%



Benchmark Summary

Function Relative Speed
tan () 1

vectorized ftan 1.36

arrayfun 436

looping ftan 529



Memory Management

e General Problem

- Octave hides details like garbage collection
- BUT, Octave Is not an optimizing compiler

- Still necessary to manage memory and avoid bad
code constructs

 Must have enough memory to avoid swapping



Growing Arrays

* Forces multiple memory allocations, fragments
system memory

function y = ftan_mem (Xx)
y = [1I;
for 1 = 1:numel (X)
y(end+1l) = sin (x(1)) / cos (x(1));
endfor
y = reshape (y, size (X));

endfunction



Pre-Declare Arrays

* Single memory allocation
function y = ftan_mem_declare (Xx)
y = zeros (size (x));
for 1 = 1:numel (Xx)
y(1i) = sin (x(1)) / cos (x(1)),
endfor

endfunction



Memory Benchmarking

Method RunTime
Array growth 167
Pre-declared array 143

% change -14%



In-Place Operators 1

A=A-+1
IS equivalent to
T™MP = A+ 1

A = TMP



In-Place Operators 2

A +=1

Does not create a temporary array!



Method
A=A+1
A++

++A
A+=1

In-Place Benchmarks

RunTime % Change Relative RunTime
111 -- 1

110 -1% .99

111 0% 1

041 -60% 40

» Octave core functions already use in-place operators
» Use built-in functions and get optimization for free



Copy-on-Write (COW)

» Octave conserves memory by using
Copy-on-Write

* A copy of a variable, such as y = x, creates a
link to the original variable without using
additional memory

* Modifications to a copy of a variable, such as
y =y + 1, require allocation of new memory



Accidental Memory Consumption

function retval = tst_cow (Xx)
tmp = x + 1,
retval = 2 * tmp;
endfunction
« Use 3*sizeof (xX) memory to store x, tmp, and retval

 Minimum memory allocation of 2*sizeof (x) is possible through
simple recoding



Avoiding COW |

» Strategy 1: Avoid COW by using a single
Intermediate variable for all calculations

function retval = tst_cow (Xx)
tmp = x + 1;
tmp = 2 * tmp;
retval = tmp;

endfunction



Avoiding COW I

o Strategy 2: Avoid COW by using the output
variable for intermediate calculations

function retval = tst_cow (Xx)
retval = x + 1;
retval = 2 * retval;

endfunction



Principle 3 : Manage memory

* Pre-declare large variables

» Clear large, unnecessary variables before
calculations begin

e Use In-place operators
* Avoid accidental COW variables



4 General Design Principles

1. Avoid parsing/translation
2. Use built-in functions

3. Manage memory

4. Stay within interpreter



Performance Expectations

Vectorization : ~100X

Built-in Functions : ~2-100X
Memory Management : ~25%
Stay within interpreter : < 10%



What If it isn’t enough?

» Use the 80/20 rule
» Accelerate only the bottleneck

e Look at the external code interface In
Appendix A



