

GNU Octave Interval Package

First Anniversary by Oliver Heimlich

Outline

- > Why am I doing this?
- > Interval arithmetic
- > New features from IEEE Std 1788-2015, IEEE standard for interval arithmetic
- > Package development @ Octave Forge

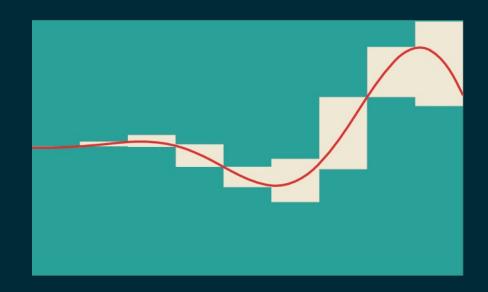
Why am I doing this?

- > Fun
- > Freedom
- > Learn
- > Create & Share

What is interval arithmetic?

- No approximate results, but boundaries
- > Guaranteed enclosures of the exact result
- Function evaluation on a range of possible values

```
>> sin (pi)


ans = 1.2246e-16

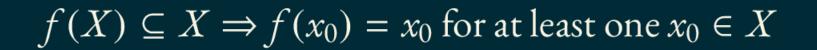
>> sin (infsup ("pi"))

ans = [-3.2163e-16, +1.2247e-16]

>> cos (infsup ("[-2, +1]"))

ans = [-0.41615, +1]
```


Interval arithmetic is always correct


... and optionally accurate

```
x \in X \Rightarrow f(x) \in f(X)
interval
interval function
```

```
>> x = rand (100, 1);
>> X = infsup (x);
>> sum (ismember (...
        csc (x), csc (X)))
ans = 98
```


Brouwer fixed-point theorem

continuous interval function

bounded interval


```
>> X = infsupdec ("[-1, +1]");
>> cos (X)
ans = [0.5403, 1]_com
>> subset (ans, X)
ans = 1
```

interval "decoration" proves that the function is continuous

Interval methods are superior

> For example: Bisection

Find enclosures of all roots within a given interval

Use interval Newton method if derivative is known

```
>> fzero (@cos, 0)
ans = 1.5708
>> fzero (@cos, ...
    infsup ("[-2, +5]"))
ans = 3×1 interval vector
```

```
[-1.5708, -1.5707]
[1.5707, 1.5708]
[4.7123, 4.7124]
```

Brand-new IEEE Std 1788-2015

- Interchange formats and constructors
- > Semantics for evaluation
 - > Empty sets
 - > Limit values
 - > Exceptions

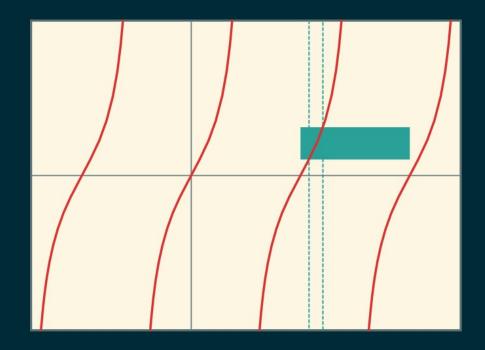
Oliver Heimlich

> List of required operations

OctConf 2015 8 of 16

IEEE standard life-cycle

The standard demands reverse mode operations


interval constraints

$$f(x) = y$$

$$x \in X_{o}, y \in Y$$

$$X_{I} = fRev(Y, X_{o})$$
improved solution

```
>> tanrev ("[.25, .75]", ...
2 * infsup ("[0, pi]"))
ans = [3.3865, 3.7851]
```


Intervals: the universal tool—not

- No free lunch: For exact math use symbol calculations
- > Global error intervals might become meaningless: For large value ranges consider statistic methods
- Major obstacle: the "dependency problem" Can all possible values be taken independently?

$$X^2 \subseteq X \cdot X$$

Oliver Heimlich

OctConf 2015

Unit tests are mandatory for verified libraries

- > Traditional Octave %! tests
- > Doctest package
- Collection of test cases from several free interval libraries
 - > portable
 - domain-specific language
 - compiled into Octave test code and included in release

ca. 700 test cases

ca. 340 test cases (+60 in manual)

ca. 9100 test cases from ... libieeep1788, MPFI, FILIB, C-XSC, and self-made

For comparison ... in all other packages: ca. 5700 in core: ca. 13000

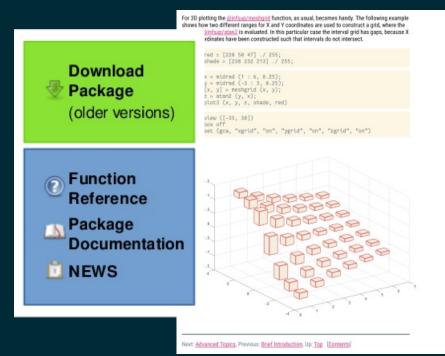
User feedback would be better than unit tests

- I did receive almost no user feedback whatsoever —are there users actually?
- Communication with distributors is difficult
 - They fix technical issues instead of reporting upstream
- > Yesterday during code sprint
 - > Useful feedback from user code

- > Attempts to advertise
 - Octave mailing lists (little feedback)
 - Experts mailing lists (mentioned in conference)
 - > Free software dictionary
 - > Wikipedia: Interval arithmetic
 - Popular link collection
 - Links on related project websites
 - Other developers in the field (many abandoned projects by scientists)

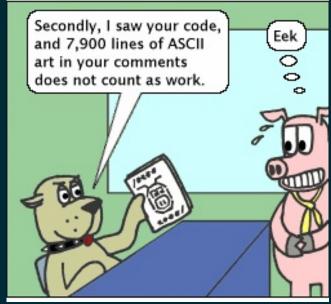
There is amazing reach with Octave Forge

- > FreshPorts (FreeBSD)
- MXE-Octave (Windows)
- MacPorts (OS X)
- openSUSE
- > (possibly one day) Debian
- Cygwin


> and interested users on the mailing lists who use pkg install -forge ...

Best practices from the interval package

- > Texinfo is great
 - > easy to learn (LaTeX dialect)
 - good looking documenation
 - > easy to maintain
 - (PDF not so great)
- Makefile for developers
 - > simplifies package release
 - simplifies build automation (Jenkins etc.)
 - essential for complex builds (code and doc generation)


- > Package manual supplementary to function reference
 - better than federation of the two as used by Octave core

Current work queue—outlook is golden

- Multivariate interval Newton method
- Polynomial root finding, Eigenvalues
 - problem: complex values
- Utility functions and matrix functions
- Different plotting functions, colormaps, plotting of unbound intervals

- > Basics are done
- > Release cycles getting larger
 - some rest for Carnë

Images by

Ruth García (Guy riding gnu) http://www.gnu.org/graphics/umsa/ umsa

Frits Ahlefeldt-Laurvig (Newton) https://www.flickr.com/photos/hikingartist/6217869031

Drake Emko & Jen Brodzik (Hackless comic) http://hackles.org/cgi-bin/archives.pl?request=334

Several others Wikipedia and own work