Gmsh and GetDP in Academia and Industry

C. Geuzaine

University of Liege, Belgium

OctConf 2015 - Darmstadt, September 23 2015

Some Background

| am a professor of Electrical Engineering and Computer Science at
the University of Liege in Belgium, where | lead the ACE research

group

Our research interests: modeling, analysis, algorithm development,
and simulation for problems arising in various areas of engineering
and science

We write quite a lot of codes, mostly PDE solvers in C++/Python
Two codes released under GNU GPL:

e Gmsh mesh generator: http://gmsh.info

e GetDP finite element solver: http://getdp.info

These are long term efforts (both started in 1997)

http://gmsh.info
http://getdp.info

Some Background

Today, Gmsh and GetDP represent
e half a million lines of (mostly C++) code
e still only 3 core devs; but about 100 with repo write access
e about 1000 people on mailing lists
e about 5000 binary downloads per week (80% Windows)

e about 400 (google scholar) citations per year

Some Background

Today, Gmsh and GetDP represent
e half a million lines of (mostly C++) code
e still only 3 core devs; but about 100 with repo write access
e about 1000 people on mailing lists
e about 5000 binary downloads per week (80% Windows)

e about 400 (google scholar) citations per year

Let’s have a look!

Quick overview of Gmsh

e Gmsh is based around four modules: Geometry, Mesh, Solver and
Post-processing; 3 levels of use:

e Developper: through the (undocumented...) C++ or Python
API

e Advanced user: through the dedicated “.geo” language

e Novice user: through the GUI (which translates most actions
into “.geo” file commands)

e Main characteristic: all algorithms are written in terms of abstract
CAD entities, using a “Boundary REPresentation” approach

)
FatTEe
Sy’

0T
LR

v‘
I VA’"'

Aé“vﬂ
R
‘;AVL

SRS

AT
&
o

2

o

i
X
X

A
&
v,

00
5
s

V;‘

K v.mvé'ﬁ‘e'
TAYav Py
ok

iy,

TRERRRR

NNRRS
R

REEARREOAR
AR

S i

SHREOS

S

AVAVAEL
SORE
e
R
R

KT
ST
0t
T >
pee Ay
e

ar ’ A
5 _o— I
»v«A/‘('v‘i

SR
i

A

4
-
L

Vay
%5,
N

A
AN
W

Quick overview of Gmsh

Any 3-D model can be defined using its Boundary Representation
(BRep): a volume is bounded by a set of surfaces, and a surface is
bounded by a series of curves; a curve is bounded by two end points.

T herefore, four kinds of model entities are defined:

1. Model Vertices G? that are topological entities of dimension O,
2. Model Edges Gil that are topological entities of dimension 1,
3. Model Faces G,L-2 that are topological entities of dimension 2,

4. Model Regions G,? that are topological entities of dimension 3.

Quick overview of Gmsh

Model entities are topological entities, i.e., they only deal with adja-
cencies in the model, and we use a bi-directional data structure for

representing the graph of adjacencies.

Schematically, we have

=Gl =6G?=aG3

Any model entity is able to build its list of adjacencies using local
operations.

Quick overview of Gmsh

The geometry of a model entity depends on the solid modeler for its
underlying representation. Solid modelers usually provide a parametriza-
tion of the shapes, i.e., a mapping p € R? — x € R3:

1. The geometry of a model vertex G? is simply its 3-D location

L; — (x% Yis zZ) .

2. The geometry of a model edge Gz-l is its underlying curve C; with
its parametrization p(t) € C;, t € [t1,to].

3. The geometry of a model face Gi2 is its underlying surface §; with
its parametrization p(u,v) € S;.

4. The geometry associated to a model region is R3.

Quick overview of Gmsh

Point p located on the curve C that is itself embedded in surface S

Quick overview of Gmsh

99090

Ly

CAD kernel idiosyncrasies: seam edges and degenerated edges

Quick overview of Gmsh

o8
J?‘“ﬂ"“fﬁmﬁ?ﬁhr 4
' B Ay ANy

]

o X
A o R
VAV praTAN R vy $iiri

VAV,
A"‘""“‘iﬂ&?ﬁﬁv

seam edges and degenerated edges

CAD kernel idiosyncrasies

Quick overview of Gmsh

e For the geometry:

GModel
GVertex
GEdge
GFace
GRegion

Concrete implementation for each CAD kernel (e.g. gmshFace, 0OCCFace,

parasolidFace,fourierFace,levelsetFace,discreteFace).

Direct access via CAD kernel APIs: never translate/convert formats!

Quick overview of Gmsh

class GEdge : public GEntity {
//bi-directional data structure
GVertex *xvl1, *v2;
std::1list<GFace*> faces;
public:
//pure virtual functions that have to be overloaded for every
//solid modeler
virtual std::pair<double> parRange() = 0;
virtual Point3 point(double t) = 0;
virtual Vector3 firstDer (double t) = O;
virtual Point2 reparam(GFace *f, double t, int dir) = O0;
virtual bool isSeam(GFace *f) = 0;

//other functions of the class are non pure virtual

//..

Quick overview of Gmsh

class GFace : public GEntity {
//bi-directional data structure
GRegion *rl, *r2;
std: :1ist<GEdge*> edges;

public:
//pure virtual functions that have to be overloaded for every
//solid modeler
virtual std::pair<double> parRange(int dir) const = O0;
virtual Point3 point(double u, double v) const = 0;
virtual std::pair<Vector3> firstDer(double u, double v) const = O;
//other functions of the class are non pure virtual

virtual double curvature(double u, double v) const;

//...

Quick overview of Gmsh

e For the mesh:

MElement
MVertex

Each GEntity stores its “internal” vertices. Parallel I/O through GModel.

Minimal storage:
- 44 bytes per vertex, 28 bytes per tetrahedron (12 Mtets/Gb)

- Enriched for specific algorithms
- MEdge and MFace created on demand

MElement provides access to mapping, Jacobian and integration

Quick overview of Gmsh

Recent features:
e Reparameterization of surfaces (“STL remeshing”)

e Coarse grained (distributed, via MPI) and fine-grained (shared
memory, via OpenMP) parallel 3D Delaunay meshing algorithm

e Automatic quad and hex-dominant meshing
e Anisotropic meshes and boundary layers

e Homology and cohomology solver

Quick overview of GetDP

e GetDP language (“.pro” files) for the natural expression of finite
element problems (explicit function spaces and weak forms, ...)

e Solving V- (aVu) = f ondomain €} translates into:

Formulation{

{ Name F; Type FemEquation;
Quantity {

{ Name u; Type Local; NameOfSpace Hl1 ©0; }

}
Equation {
Galerkin { [a[] * Dof{d u}, {d u}] ; In Omega; .. }
Galerkin { [f[1], {u}] 5 In Omega; .. }
}
}
}

i.e. a quite direct transcription of the weak form of the problem:
Find © € Hy () such that/ aVu - Vu' dQ +/ fu'dQr=0,
Vo' € H2(Q) . .

Quick overview of GetDP

No distinction between 1D, 2D or 3D ; static, transient, time-
(multi-)harmonic, eigenproblems

Easy coupling of fields and formulations (physics), staggered or
monolithic, e.g. for explicit Jacobian matrices/sensitivity analysis of
strongly coupled nonlinear problems

Natural handling of non-local (global, integral) quantities, e.g. for
circuit coupling

Linear algebra through PETSc/SLEPc and/or Sparksit/Arpack

Quick overview of GetDP

e Recent developments:

e Use of Gmsh library for 10, post-processing, mesh-to-mesh
interpolation

e Large scale calculations through domain decomposition
methods (> 1 billion DoFs on 10,000 CPUs for time-harmonic
wave scattering)

e High-order eigenvalue problems

e Built-in Octave and Python interpreters

Gmsh and GetDP in academia and in industry

Actual use is difficult to assess, but today we estimate that

e Gmsh is probably the most popular open source mesh
generator; it is used in hundreds of universities, research
centers and commercial companies around the world

e GetDP is used intensively in a few dozens universities and
companies

Several commercial tools use or integrate (with dual licensing) the
codes, e.g. http://www.nxmagnetics.de

http://www.geuz.org/analog/downloads.html
http://www.nxmagnetics.de

Gmsh and GetDP in academia and in industry

Actual use is difficult to assess, but today we estimate that

e Gmsh is probably the most popular open source mesh
generator; it is used in hundreds of universities, research
centers and commercial companies around the world

e GetDP is used intensively in a few dozens universities and
companies

Several commercial tools use or integrate (with dual licensing) the
codes, e.g. http://www.nxmagnetics.de

Where do we go from here? The ONELAB project: http://onelab.info

http://www.geuz.org/analog/downloads.html
http://www.nxmagnetics.de
http://onelab.info

Context of the ONELAB project

e Economic
e Growing importance of numerical simulation in education and
industry
e Prohibitive cost of commercial packages for a significant subset of
potential users (SMEs, education, occasional use)

e Scientific
e High quality of free/open-source software developed in
universities and research centers
e Sometimes ahead of commercial equivalents

e Practical
e No user-friendly interface and/or poor documentation for most
open source Finite Element Analysis (FEA) codes

General goal of the ONELAB project

Develop a platform for integrating free Finite Element Analysis (FEA)
software:

 allowing the integration (by co-simultation) of any open-source code,
whatever their characteristics

« with an intuitive GUI allowing newbie users to get started and guided
into the world of FE modeling — but with the possibility to construct
sophisticated, upgradable, multi-code, multi-platform scripts for the
specialized user

« and with the possibility to construct both education- and business-
specific tools

General goal of the ONELAB project

The solution should overcome two difficulties associated with free
FEA software :

(1) The heterogeneity of the tools

(2) The missing “expert layer”, top-down validation and
documentation found in commercial offerings

State of the art

e Many closed, commercial tools (COMSOL, Ansys Workbench, ...)

e More open tools, e.g. GiD (http://gid.cimne.upc.es), but not free

* Closest free software: SALOME (http://salome-platform.org), but very
large project, not well suited for building “fast and light” domain-
specific applications

e Other open source projects: “multi-physic” codes (Elmer, etc.) still
mainly focused on a single domain (CFD, solids, E-M); the
implementation of new physics leads to bare-bones features, far from
the refinement of specialized codes; no easy-to-use interface and no
driving of other codes

http://salome-platform.org
http://salome-platform.org

ONELAB guiding principles

Don’t reimplement, interface the existing!

Make it as small, lightweight and as easy to maintain as possible
(no solver-dependent code in the interface)

Make it easy to provide templates, with interactive parameter
modification

ONELAB role = data centralization, (optional) modification and
redispatching

ONELAB guiding principles

e Don’t reimplement, interface the existing!

e Make it as small, lightweight and as easy to maintain as possible
(no solver-dependent code in the interface)

e Make it easy to provide templates, with interactive parameter
modification

e ONELAB role = data centralization, (optional) modification and
redispatching

Issues of completeness and consistency of the parameter set are
completely dealt with on the solver side

ONELAB features

(1) Heterogeneity of the tools

(2) Missing “expert” layer, top-down validation and documentation

ONELAB features

(1) Abstract interface to FEA codes

ONELAB features

(1) Abstract interface to FEA codes

e CAD & meshing; physical properties, constraints & code drivers;
post-processing

ONELAB features

(1) Abstract interface to FEA codes

e CAD & meshing; physical properties, constraints & code drivers;
post-processing

e |mplemented in Gmsh:

ONELAB features

(1) Abstract interface to FEA codes

e CAD & meshing; physical properties, constraints & code drivers;
post-processing

e |mplemented in Gmsh:

e Parameter exchange library

ONELAB features

(1) Abstract interface to FEA codes

e CAD & meshing; physical properties, constraints & code drivers;
post-processing

e |mplemented in Gmsh:
e Parameter exchange library

e Native C++ and Python clients; Parser for non-native clients

ONELAB features

(1) Abstract interface to FEA codes

e CAD & meshing; physical properties, constraints & code drivers;
post-processing

e |mplemented in Gmsh:
e Parameter exchange library
e Native C++ and Python clients; Parser for non-native clients

(2) Development and documentation of templates (“meta-models”)

ONELAB features

(1) Abstract interface to FEA codes

e CAD & meshing; physical properties, constraints & code drivers;
post-processing

e |mplemented in Gmsh:
e Parameter exchange library
e Native C++ and Python clients; Parser for non-native clients
(2) Development and documentation of templates (“meta-models”)

e Model: blackbox, parameterizable via abstract interface

ONELAB features

(1) Abstract interface to FEA codes

e CAD & meshing; physical properties, constraints & code drivers;
post-processing

e |mplemented in Gmsh:
e Parameter exchange library
e Native C++ and Python clients; Parser for non-native clients
(2) Development and documentation of templates (“meta-models”)
e Model: blackbox, parameterizable via abstract interface

e Meta-model: set of models + selection logic

ONELAB implementation

Client-server:

e (Clients: CAD kernels, meshers, solvers, post-processors
e Server: Gmsh (currently) + database

Abstract interface:

e The server has no a priori knowledge of the clients (no meta-
language or exchange file format)

e The server does not write input files for (native) clients: the client

communicates with the server to define what information should
be exchanged

ONELAB implementation

Abstract interface to physical properties, constraints & code drivers:
e Library for parameter exchange:

e Reference server in C++ for portability, e.g. on iOS/Android
(onelab: :server)

e C(Clientsin C++ (onelab: :client) or Python

e Exchange parameters (onelab: :parameter) through TCP/
IP or Unix sockets, or in-memory

ONELAB implementation

Abstract interface to physical properties, constraints & code drivers:
e Library for parameter exchange:

e Reference server in C++ for portability, e.g. on iOS/Android
(onelab: :server)

e C(Clientsin C++ (onelab: :client) or Python

e Exchange parameters (onelab: :parameter) through TCP/
IP or Unix sockets, or in-memory

e “Native” clients use C++ or Python directly
e “Non-native” clients use Python, by instrumenting their input files

e Currently: ElImer, OpenFOAM, Code_Aster, Abaqus, Gnuplot

ONELAB implementation

Native client: overloading of existing functions (GetDP)

DefineConstant[Numstep = { 50, Name "Elmer/Number of time steps"}];
DefineConstant[TimeStep = { 0.1, Name "Elmer/Time step"}];

Non-native clients: instrumentation the input files of the client (EImer)

OL.line NumStep.number(50, Elmer/, Number of time steps);
OL.line TimeStep.number(©.1, Elmer/, Time step);
Simulation

Simulation Type = Transient

Timestep sizes = OL.get(TimeStep)

Timestep Intervals = OL.get(NumStep)

Preprocessing: conversion into a valid input file for the client (Elmer)

Simulation

Simulation Type = Transient
Timestep sizes = 0.1
Timestep Intervals = 50

ONELAB implementation

onelab: :parameter

e pame as ‘/’-separated path
e dynamic dependency list of clients and status change
e decorations (help, bounds, choices, ...)

e serialization and deserialization

ONELAB implementation

onelab: :parameter
e pame as ‘/’-separated path
e dynamic dependency list of clients and status change
e decorations (help, bounds, choices, ...)
e serialization and deserialization

Example for native Gmsh & GetDP clients (in .geo or .pro files):
DefineConstant[N = {32, Name “Number of slices”}];

Example for Python client:
c = onelab.client()

N = c.defineNumber('Number of slices', value=32)

ONELAB implementation

onelab: :parameter
e pame as ‘/’-separated path
e dynamic dependency list of clients and status change
e decorations (help, bounds, choices, ...)
e serialization and deserialization

Example for native Gmsh & GetDP clients (in .geo or .pro files):
DefineConstant[N = {32, Name “Number of slices”}];

Example for Python client:
c = onelab.client()

N = c.defineNumber('Number of slices', value=32)

Let’s have another look!

Conclusion

Growing use of Gmsh and GetDP in academia and industry

“Vulgarization” requires quite a bit of work, hence the ONELAB
project:

e Asimple (trivial?) way to interface FEA solvers
e Interactive, based on Gmsh, and free
e And now available on iOS and Android

Give it a try:

http://onelab.info

Wishlist: we want an Octave server (and client)!

http://onelab.info

PS: Doing open source is rewarding!

Comment about Gmsh on http://www.fltk.org (sic):

>From Anonymous, 20:33 May 18, 2004 (score=1)

Je suis outre du programme pour des intellectuels
vous devrez avoir plus d’'imagination vous faite
onte au genie informatique

http://www.fltk.org

PS: Doing open source is rewarding!

Comment about Gmsh on http://www.fltk.org (sic):

>From Anonymous, 20:33 May 18, 2004 (score=1)

Je suis outre du programme pour des intellectuels
vous devrez avoir plus d’'imagination vous faite
onte au genie informatique

Translation (including misspellings!) for the non-french speaking:

>From Anonymous, 20:33 May 18, 2004 (score=1)

I am ashamed of the program for intelectuals you
should have more imagination you are the schame of
computer science

http://www.fltk.org

Thanks for your attention!

cgeuzaine@ulg.ac.be

