
Gmsh	and	GetDP	in	Academia	and	Industry	

C.	Geuzaine	
University	of	Liège,	Belgium	

OctConf	2015	-	Darmstadt,	September	23	2015

• I	am	a	professor	of	Electrical	Engineering	and	Computer	Science	at	
the	University	of	Liège	in	Belgium,	where	I	lead	the	ACE	research	
group	

• Our	research	interests:	modeling,	analysis,	algorithm	development,	
and	simulaNon	for	problems	arising	in	various	areas	of	engineering	
and	science	

• We	write	quite	a	lot	of	codes,	mostly	PDE	solvers	in	C++/Python	

• Two	codes	released	under	GNU	GPL:	

• Gmsh	mesh	generator:	hVp://gmsh.info	

• GetDP	finite	element	solver:	hVp://getdp.info		

• These	are	long	term	efforts	(both	started	in	1997)

Some	Background

http://gmsh.info
http://getdp.info

Some	Background

Today,	Gmsh	and	GetDP	represent	

• half	a	million	lines	of	(mostly	C++)	code	

• sNll	only	3	core	devs;	but	about	100	with	repo	write	access	

• about	1000	people	on	mailing	lists	

• about	5000	binary	downloads	per	week	(80%	Windows)	

• about	400	(google	scholar)	citaNons	per	year	

Some	Background

Today,	Gmsh	and	GetDP	represent	

• half	a	million	lines	of	(mostly	C++)	code	

• sNll	only	3	core	devs;	but	about	100	with	repo	write	access	

• about	1000	people	on	mailing	lists	

• about	5000	binary	downloads	per	week	(80%	Windows)	

• about	400	(google	scholar)	citaNons	per	year	

Let’s	have	a	look!

Quick	overview	of	Gmsh

• Gmsh	is	based	around	four	modules:	Geometry,	Mesh,	Solver	and	
Post-processing;	3	levels	of	use:	

• Developper:	through	the	(undocumented…)	C++	or	Python	
API	

• Advanced	user:	through	the	dedicated	“.geo”	language	

• Novice	user:	through	the	GUI	(which	translates	most	acNons	
into	“.geo”	file	commands)	

• Main	characterisNc:	all	algorithms	are	wriVen	in	terms	of	abstract	
CAD	enNNes,	using	a	“Boundary	REPresentaNon”	approach

T2	:	Interface	CAO	/	maillage

6

T2	:	Interface	CAO	/	maillage

8

10 E. MARCHANDISE

10

51

50

60

61 62

41

00
@T1

30

12

11

u00(x)

20

31
40

Figure 5. Multiscale Laplace partitioning method of an aorta(G = 0, NB = 13, ⌘ = 17). In this
example there are n = 6 di↵erent levels on which harmonic maps are computed. The red line shows
the partition line that recursively splits the mesh into two area balanced mesh partitions (see the

resulting mesh partition in Fig.6).

Copyright c� 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–6
Prepared using nmeauth.cls

Basic concepts

Any 3-D model can be defined using its Boundary Representation

(BRep): a volume is bounded by a set of surfaces, and a surface is

bounded by a series of curves; a curve is bounded by two end points.

Therefore, four kinds of model entities are defined:

1. Model Vertices G

0
i

that are topological entities of dimension 0,

2. Model Edges G

1
i

that are topological entities of dimension 1,

3. Model Faces G

2
i

that are topological entities of dimension 2,

4. Model Regions G

3
i

that are topological entities of dimension 3.

11

Quick	overview	of	Gmsh

Model entities are topological entities, i.e., they only deal with adja-

cencies in the model, and we use a bi-directional data structure for

representing the graph of adjacencies.

Schematically, we have

G

0
i

⌦ G

1
i

⌦ G

2
i

⌦ G

3
i

.

Any model entity is able to build its list of adjacencies using local

operations.

12

Quick	overview	of	Gmsh

The geometry of a model entity depends on the solid modeler for its

underlying representation. Solid modelers usually provide a parametriza-

tion of the shapes, i.e., a mapping p 2 R

d 7! x 2 R

3:

1. The geometry of a model vertex G

0
i

is simply its 3-D location

x

i

= (x
i

, y

i

, z

i

).

2. The geometry of a model edge G

1
i

is its underlying curve C
i

with

its parametrization p(t) 2 C
i

, t 2 [t1, t2].

3. The geometry of a model face G

2
i

is its underlying surface S
i

with

its parametrization p(u, v) 2 S
i

.

4. The geometry associated to a model region is R

3.

13

Quick	overview	of	Gmsh

u = u(t), v = v(t)

S

p(u, v)

C

v

u

x

x = x(t), y = y(t), z = z(t)

v = v(x, y, z)

C

S

p(x, y, z)

t1 p(t)
tt2

C

u = u(x, y, z)

z

y

Point p located on the curve C that is itself embedded in surface S

14

Quick	overview	of	Gmsh

CAD kernel idiosyncrasies: seam edges and degenerated edges

15

Quick	overview	of	Gmsh

CAD kernel idiosyncrasies: seam edges and degenerated edges

15

Quick	overview	of	Gmsh

C.#Geuzaine#+#Onera#Scien0fic#Day#+#Oct.#3#2012 2

Surface&meshes

Surface#triangula?ons#can#be#generated

• either#directly#in#the#embedding#3MD#Euclidean#space

• or#in#the#parametric#plane#of#the#surface,#which#is#far#more#robust#
(Delaunay#and#variants)

Surface mesh generation techniques

Surface meshes can be
1 generated directly in the “real” 3D space; or
2 generated in the parametric plane of the surface.

Several algorithms implemented: Delaunay, “Frontal Delaunay”, local
mesh modifications (collapse and splits only)

C. Geuzaine WIAS, December 4th, 2008

Surface mesh generation techniques

When a decent parametrization of the surface exists, building the
mesh in the parametric plane is more robust
Issues like seam and/or degenerated edges have to be taken into
account,
Need ability to generate (highly) anisotropic meshes.

C. Geuzaine WIAS, December 4th, 2008

Abstract interface

• For the geometry:

GModel

GVertex

GEdge

GFace

GRegion

Concrete implementation for each CAD kernel (e.g. gmshFace, OCCFace,

parasolidFace, fourierFace, levelsetFace, discreteFace).

Direct access via CAD kernel APIs: never translate/convert formats!

16

Quick	overview	of	Gmsh

class GEdge : public GEntity {
//bi-directional data structure

GVertex *v1, *v2;

std::list<GFace*> faces;

public:

//pure virtual functions that have to be overloaded for every

//solid modeler

virtual std::pair<double> parRange() = 0;

virtual Point3 point(double t) = 0;

virtual Vector3 firstDer(double t) = 0;

virtual Point2 reparam(GFace *f, double t, int dir) = 0;

virtual bool isSeam(GFace *f) = 0;

//other functions of the class are non pure virtual

//..

};

17

Quick	overview	of	Gmsh

class GFace : public GEntity {
//bi-directional data structure

GRegion *r1, *r2;

std::list<GEdge*> edges;

public:

//pure virtual functions that have to be overloaded for every

//solid modeler

virtual std::pair<double> parRange(int dir) const = 0;

virtual Point3 point(double u, double v) const = 0;

virtual std::pair<Vector3> firstDer(double u, double v) const = 0;

//other functions of the class are non pure virtual

virtual double curvature(double u, double v) const;

//...

};

18

Quick	overview	of	Gmsh

Abstract interface (cont’d)

• For the mesh:

MElement

MVertex

Each GEntity stores its “internal” vertices. Parallel I/O through GModel.

Minimal storage:

- 44 bytes per vertex, 28 bytes per tetrahedron (12 Mtets/Gb)

- Enriched for specific algorithms

- MEdge and MFace created on demand

MElement provides access to mapping, Jacobian and integration

Library can be compiled with mesh generation algorithms built-in

19

Quick	overview	of	Gmsh

Recent	features:	

• ReparameterizaNon	of	surfaces	(“STL	remeshing”)	

• Coarse	grained	(distributed,	via	MPI)	and	fine-grained	(shared	
memory,	via	OpenMP)	parallel	3D	Delaunay	meshing	algorithm	

• AutomaNc	quad	and	hex-dominant	meshing	

• Anisotropic	meshes	and	boundary	layers	

• Homology	and	cohomology	solver

Quick	overview	of	Gmsh

Quick	overview	of	GetDP

• GetDP	language	(“.pro”	files)	for	the	natural	expression	of	finite	
element	problems	(explicit	funcNon	spaces	and	weak	forms,	…)	

• Solving																																on	domain						translates	into:	

i.e.	a	quite	direct	transcripNon	of	the	weak	form	of	the	problem:	
Find																								such	that																																																																	,	

r · (aru) = f ⌦

		Formulation{	
				{	Name	F;	Type	FemEquation;	
						Quantity	{		
								{	Name	u;	Type	Local;	NameOfSpace	H1_0;	}	
						}	
						Equation	{	
								Galerkin	{	[a[]	*	Dof{d	u},	{d	u}]	;	In	Omega;	…	}			
								Galerkin	{	[f[],	{u}]	;	In	Omega;	…	}	
						}	
				}	
		}	

u 2 H1
0 (⌦)

Z

⌦
aru ·ru0 d⌦+

Z

⌦
f u0 d⌦ = 0

8u0 2 H1
0 (⌦)

Quick	overview	of	GetDP

• No	disNncNon	between	1D,	2D	or	3D	;	staNc,	transient,	Nme-
(mulN-)harmonic,	eigenproblems	

• Easy	coupling	of	fields	and	formulaNons	(physics),	staggered	or	
monolithic,	e.g.	for	explicit	Jacobian	matrices/sensiNvity	analysis	of	
strongly	coupled	nonlinear	problems		

• Natural	handling	of	non-local	(global,	integral)	quanNNes,	e.g.	for	
circuit	coupling	

• Linear	algebra	through	PETSc/SLEPc	and/or	Sparksit/Arpack

Quick	overview	of	GetDP

• Recent	developments:	

• Use	of	Gmsh	library	for	IO,	post-processing,	mesh-to-mesh	
interpolaNon	

• Large	scale	calculaNons	through	domain	decomposiNon	
methods	(>	1	billion	DoFs	on	10,000	CPUs	for	Nme-harmonic	
wave	scaVering)	

• High-order	eigenvalue	problems		

• Built-in	Octave	and	Python	interpreters

Gmsh	and	GetDP	in	academia	and	in	industry

Actual	use	is	difficult	to	assess,	but	today	we	esNmate	that	

• Gmsh	is	probably	the	most	popular	open	source	mesh	
generator;	it	is	used	in	hundreds	of	universiNes,	research	
centers	and	commercial	companies	around	the	world	

• GetDP	is	used	intensively	in	a	few	dozens	universiNes	and	
companies	

Several	commercial	tools	use	or	integrate	(with	dual	licensing)	the	
codes,	e.g.	hVp://www.nxmagneNcs.de	

http://www.geuz.org/analog/downloads.html
http://www.nxmagnetics.de

Gmsh	and	GetDP	in	academia	and	in	industry

Actual	use	is	difficult	to	assess,	but	today	we	esNmate	that	

• Gmsh	is	probably	the	most	popular	open	source	mesh	
generator;	it	is	used	in	hundreds	of	universiNes,	research	
centers	and	commercial	companies	around	the	world	

• GetDP	is	used	intensively	in	a	few	dozens	universiNes	and	
companies	

Several	commercial	tools	use	or	integrate	(with	dual	licensing)	the	
codes,	e.g.	hVp://www.nxmagneNcs.de	

Where	do	we	go	from	here?	The	ONELAB	project:	hVp://onelab.info

http://www.geuz.org/analog/downloads.html
http://www.nxmagnetics.de
http://onelab.info

• Economic		
• Growing	importance	of	numerical	simulaNon	in	educaNon	and	
industry	

• ProhibiNve	cost	of	commercial	packages	for	a	significant	subset	of	
potenNal	users	(SMEs,	educaNon,	occasional	use)		

• ScienIfic	
• High	quality	of	free/open-source	sooware	developed	in	
universiNes	and	research	centers	

• SomeNmes	ahead	of	commercial	equivalents	

• PracIcal	
• No	user-friendly	interface	and/or	poor	documentaNon	for	most	
open	source	Finite	Element	Analysis	(FEA)	codes

Context	of	the	ONELAB	project

Develop	a	plaporm	for	integraIng	free	Finite	Element	Analysis	(FEA)	
sooware:	

• allowing	the	integraNon	(by	co-simultaNon)	of	any	open-source	code,	
whatever	their	characterisNcs		

• with	an	intuiNve	GUI	allowing	newbie	users	to	get	started	and	guided	
into	the	world	of	FE	modeling	—	but	with	the	possibility	to	construct	
sophis1cated,	upgradable,	mul1-code,	mul1-pla8orm	scripts	for	the	
specialized	user		

• and	with	the	possibility	to	construct	both	educaNon-	and	business-
specific	tools	

General	goal	of	the	ONELAB	project

The	soluNon	should	overcome	two	difficulNes	associated	with	free	
FEA	sooware	:	

(1) The	heterogeneity	of	the	tools	

(2) The	missing	“expert	layer”,	top-down	validaIon	and	
documentaIon	found	in	commercial	offerings

General	goal	of	the	ONELAB	project

• Many	closed,	commercial	tools	(COMSOL,	Ansys	Workbench,	…)	

• More	open	tools,	e.g.	GiD	(hVp://gid.cimne.upc.es),	but	not	free	

• Closest	free	sooware:	SALOME	(hVp://salome-plaporm.org),	but	very		
large	project,	not	well	suited	for	building	“fast	and	light”	domain-
specific	applicaNons	

• Other	open	source	projects:	“mulN-physic”	codes	(Elmer,	etc.)	sNll	
mainly	focused	on	a	single	domain	(CFD,	solids,	E-M);	the	
implementaNon	of	new	physics	leads	to	bare-bones	features,	far	from	
the	refinement	of	specialized	codes;	no	easy-to-use	interface	and	no	
driving	of	other	codes

State	of	the	art

http://salome-platform.org
http://salome-platform.org

• Don’t	reimplement,	interface	the	exisNng!	

• Make	it	as	small,	lightweight	and	as	easy	to	maintain	as	possible	
(no	solver-dependent	code	in	the	interface)		

• Make	it	easy	to	provide	templates,	with	interacNve	parameter	
modificaNon	

• ONELAB	role	=	data	centralizaIon,	(opNonal)	modificaIon	and	
redispatching

ONELAB	guiding	principles

• Don’t	reimplement,	interface	the	exisNng!	

• Make	it	as	small,	lightweight	and	as	easy	to	maintain	as	possible	
(no	solver-dependent	code	in	the	interface)		

• Make	it	easy	to	provide	templates,	with	interacNve	parameter	
modificaNon	

• ONELAB	role	=	data	centralizaIon,	(opNonal)	modificaIon	and	
redispatching

Issues	of	completeness	and	consistency	of	the	parameter	set	are	
completely	dealt	with	on	the	solver	side

ONELAB	guiding	principles

(1)	Heterogeneity	of	the	tools	

(2)	Missing	“expert”	layer,	top-down	validaIon	and	documentaIon

ONELAB	features

(1)	Abstract	interface	to	FEA	codes

ONELAB	features

(1)	Abstract	interface	to	FEA	codes

• CAD	&	meshing;	physical	properNes,	constraints	&	code	drivers;	
post-processing

ONELAB	features

(1)	Abstract	interface	to	FEA	codes

• CAD	&	meshing;	physical	properNes,	constraints	&	code	drivers;	
post-processing

• Implemented	in	Gmsh:	

ONELAB	features

(1)	Abstract	interface	to	FEA	codes

• CAD	&	meshing;	physical	properNes,	constraints	&	code	drivers;	
post-processing

• Implemented	in	Gmsh:	

• Parameter	exchange	library

ONELAB	features

(1)	Abstract	interface	to	FEA	codes

• CAD	&	meshing;	physical	properNes,	constraints	&	code	drivers;	
post-processing

• Implemented	in	Gmsh:	

• Parameter	exchange	library

• NaNve	C++	and	Python	clients;	Parser	for	non-naNve	clients

ONELAB	features

(1)	Abstract	interface	to	FEA	codes

• CAD	&	meshing;	physical	properNes,	constraints	&	code	drivers;	
post-processing

• Implemented	in	Gmsh:	

• Parameter	exchange	library

• NaNve	C++	and	Python	clients;	Parser	for	non-naNve	clients

(2)	Development	and	documentaIon	of	templates	(“meta-models”)

ONELAB	features

(1)	Abstract	interface	to	FEA	codes

• CAD	&	meshing;	physical	properNes,	constraints	&	code	drivers;	
post-processing

• Implemented	in	Gmsh:	

• Parameter	exchange	library

• NaNve	C++	and	Python	clients;	Parser	for	non-naNve	clients

(2)	Development	and	documentaIon	of	templates	(“meta-models”)

• Model:	blackbox,	parameterizable	via	abstract	interface

ONELAB	features

(1)	Abstract	interface	to	FEA	codes

• CAD	&	meshing;	physical	properNes,	constraints	&	code	drivers;	
post-processing

• Implemented	in	Gmsh:	

• Parameter	exchange	library

• NaNve	C++	and	Python	clients;	Parser	for	non-naNve	clients

(2)	Development	and	documentaIon	of	templates	(“meta-models”)

• Model:	blackbox,	parameterizable	via	abstract	interface

• Meta-model:	set	of	models	+	selecNon	logic

ONELAB	features

Client-server:	

• Clients:	CAD	kernels,	meshers,	solvers,	post-processors	

• Server:	Gmsh	(currently)	+	database	

Abstract	interface:	

• The	server	has	no	a	priori	knowledge	of	the	clients	(no	meta-
language	or	exchange	file	format)	

• The	server	does	not	write	input	files	for	(naIve)	clients:	the	client	
communicates	with	the	server	to	define	what	informaNon	should	
be	exchanged

ONELAB	implementaIon

Abstract	interface	to	physical	properNes,	constraints	&	code	drivers:	

• Library	for	parameter	exchange:		

• Reference	server	in	C++	for	portability,	e.g.	on	iOS/Android	
(onelab::server)	

• Clients	in	C++	(onelab::client)	or	Python	

• Exchange	parameters	(onelab::parameter)	through	TCP/
IP	or	Unix	sockets,	or	in-memory

ONELAB	implementaIon

Abstract	interface	to	physical	properNes,	constraints	&	code	drivers:	

• Library	for	parameter	exchange:		

• Reference	server	in	C++	for	portability,	e.g.	on	iOS/Android	
(onelab::server)	

• Clients	in	C++	(onelab::client)	or	Python	

• Exchange	parameters	(onelab::parameter)	through	TCP/
IP	or	Unix	sockets,	or	in-memory

• “NaNve”	clients	use	C++	or	Python	directly	

• “Non-naNve”	clients	use	Python,	by	instrumenNng	their	input	files	

• Currently:	Elmer,	OpenFOAM,	Code_Aster,	Abaqus,	Gnuplot

ONELAB	implementaIon

ONELAB	implementaIon

NaNve	client:	overloading	of	exisNng	funcNons	(GetDP)	
...	
DefineConstant[Numstep	=	{	50,	Name	"Elmer/Number	of	time	steps"}];	
DefineConstant[TimeStep	=	{	0.1,	Name	"Elmer/Time	step"}];	
...	

Non-naNve	clients:	instrumentaNon	the	input	files	of	the	client	(Elmer)		
... 
OL.line	NumStep.number(50,	Elmer/,	Number	of	time	steps);		
OL.line	TimeStep.number(0.1,	Elmer/,	Time	step);	
Simulation 
Simulation	Type	=	Transient		
Timestep	sizes	=	OL.get(TimeStep) 
Timestep	Intervals	=	OL.get(NumStep) 
...		

Preprocessing:	conversion	into	a	valid	input	file	for	the	client		(Elmer)	
...	
Simulation	
Simulation	Type	=	Transient	
Timestep	sizes	=	0.1	
Timestep	Intervals	=	50	
...	

onelab::parameter	

• name	as	‘/’-separated	path	

• dynamic	dependency	list	of	clients	and	status	change	

• decoraNons	(help,	bounds,	choices,	...)	

• serializaNon	and	deserializaNon

ONELAB	implementaIon

onelab::parameter	

• name	as	‘/’-separated	path	

• dynamic	dependency	list	of	clients	and	status	change	

• decoraNons	(help,	bounds,	choices,	...)	

• serializaNon	and	deserializaNon

Example	for	naNve	Gmsh	&	GetDP	clients	(in	.geo	or	.pro	files):	
DefineConstant[N	=	{32,	Name	“Number	of	slices”}];	

Example	for	Python	client:	
c	=	onelab.client()	

N	=	c.defineNumber('Number	of	slices',	value=32)	

ONELAB	implementaIon

onelab::parameter	

• name	as	‘/’-separated	path	

• dynamic	dependency	list	of	clients	and	status	change	

• decoraNons	(help,	bounds,	choices,	...)	

• serializaNon	and	deserializaNon

Example	for	naNve	Gmsh	&	GetDP	clients	(in	.geo	or	.pro	files):	
DefineConstant[N	=	{32,	Name	“Number	of	slices”}];	

Example	for	Python	client:	
c	=	onelab.client()	

N	=	c.defineNumber('Number	of	slices',	value=32)	

ONELAB	implementaIon

Let’s	have	another	look!

• Growing	use	of	Gmsh	and	GetDP	in	academia	and	industry	

• “VulgarizaNon”	requires	quite	a	bit	of	work,	hence	the	ONELAB	
project:	

• A	simple	(trivial?)	way	to	interface	FEA	solvers	

• InteracNve,	based	on	Gmsh,	and	free	

• And	now	available	on	iOS	and	Android	

• Give	it	a	try:	

• Wishlist:	we	want	an	Octave	server	(and	client)!

hVp://onelab.info	

Conclusion

http://onelab.info

Comment	about	Gmsh	on	hVp://www.fltk.org	(sic):	

 >From Anonymous, 20:33 May 18, 2004 (score=1)
 Je suis outre du programme pour des intellectuels
 vous devrez avoir plus d’imagination vous faite
 onte au genie informatique

PS:	Doing	open	source	is	rewarding!

http://www.fltk.org

Comment	about	Gmsh	on	hVp://www.fltk.org	(sic):	

 >From Anonymous, 20:33 May 18, 2004 (score=1)
 Je suis outre du programme pour des intellectuels
 vous devrez avoir plus d’imagination vous faite
 onte au genie informatique

TranslaNon	(including	misspellings!)	for	the	non-french	speaking:	

 >From Anonymous, 20:33 May 18, 2004 (score=1)
 I am ashamed of the program for intelectuals you
 should have more imagination you are the schame of
 computer science

PS:	Doing	open	source	is	rewarding!

http://www.fltk.org

Thanks	for	your	aVenNon!		

cgeuzaine@ulg.ac.be

