Symbolic package

From Octave
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The symbolic package is part of the octave-forge project.

Demos and usage examples

  • Demo of Anonymous function to symbolic function and back to anonymous function and then the use of the interval pkg.
% this is just a formula to start with,
% have fun and change it if you want to.

f=@(x) x.^2 +3*x-1 + 5*x.*sin(x);

% the next 2 line take the Anonymous function into a symbolic formula

syms x;

ff=formula(f(x));

% now calculate the derivative of the function

ffd=diff(ff);

% and convert it back to an Anonymous function

df=function_handle(ffd)


% this uses the interval pkg. to find all the roots between -15 an 10 

fzero (f, infsup (-15, 10), df)

ans4×1 interval vector

    [-5.743488743719015, -5.743488743719013]
    [-3.0962279604822407, -3.09622796048224]
    [-0.777688831121563, -0.7776888311215626]
    [0.22911205809043574, 0.2291120580904359]


  • Demo of inputting a function at the input prompt and making an Anonymous function.
# This prog. shows how to take a
# string input and make it into an anonymous function
# this uses the symbolic pkg.
disp("Example input")
disp("x^2 + 3*x - 1 + 5*x*sin(x)")
str_fucn=input("please enter your function  ","s")
fucn_sym=sym(str_fucn)
f=function_handle(fucn_sym)
# now back to symbolic
syms x;
ff=formula(f(x));
% now calculate the derivative of the function 
ffd=diff(ff);
% and convert it back to an Anonymous function
df=function_handle(ffd)
% now lets do the second derivative
ffdd=diff(ffd);
ddf=function_handle(ffdd)
% and now plot them all 
x1=-2:.0001:2;
plot(x1,f(x1),x1,df(x1),x1,ddf(x1))
grid minor on
legend("f","f '", "f '' ")


  • Demo of ODE with a step input and initial conditions.
 ## This is a demo of a second order transfer function and a unit step input.
 ## in laplace we would have        1                       1
 ##                              _______________         *  _____
 ##                             s^2 + sqrt(2)*s +1           s
 ##
 ## So the denominator is s^3 + sqrt(2) * s^2 + s
 # and for laplace initial conditions area
 ##             t(0)=0 t'(0) =0  and the step has initial condition of  1
 ## so we set   t''(0)=1
 ## In the code we use diff(y,1)(0) == 0 to do t'(0)=0
 ##
 ## I know that all this can be done using the control pkg
 ## But I used this to verify that this solution is the
 ##   same as if I used the control pkg.
 ## With this damping ratio we should have a 4.321% overshoot.
 ##
 syms y(x) 
 de =diff(y, 3 ) +sqrt(2)*diff(y,2) + diff(y) == 0;
 f = dsolve(de, y(0) == 0, diff(y,1)(0) == 0 , diff(y,2)(0) == 1)
 ff=function_handle(rhs(f))
  x1=0:.01:10;
 y=ff(x1);
 plot(x1,y)
 grid minor on 

* '''Demo of how to suppress a warning about converting from floating point numbers to symbolic numbers.

## Demo of how to use a number (which was calculated in an octave
## variable) in a symbolic calculation, without getting a warning.

## use octave to calculate some number:
 a=pi/2

## now do some work with the symbolic pkg
 syms x
    f = x * cos(x)
    df = diff(f)

## Next get the number into a symbolic variable   
## convert to string first  
    aa=mat2str(a)
## and now to a symbolic variable.    
    ww=sym(aa)
## and now use it  
    vpa(subs(df, x, ww), 28)