Fem-fenics: Difference between revisions

From Octave
Jump to navigation Jump to search
No edit summary
Line 6: Line 6:
The equation being solved is
The equation being solved is


<math> -\mathrm{div}\ ( \nabla u(x, y) ) ) = 1 \qquad \mbox{ in } \Omega</math>
<math> -\mathrm{div}\ ( \nabla u(x, y) ) ) = 1 \qquad \mbox{ in } \Omega</math>


<math> u(x, y) = 0 \qquad \mbox{ on } \Gamma_D </math>
<math> u(x, y) = 0 \qquad \mbox{ on } \Gamma_D </math>
Line 126: Line 126:
</div>
</div>
<div style="clear:both"></div>
<div style="clear:both"></div>


=== Mixed Formulation for Poisson Equation ===
=== Mixed Formulation for Poisson Equation ===

Revision as of 13:47, 11 September 2013

Package for solving Partial Differential Equations based on Fenics.

Tutorials

Poisson Equation

Here is a first example for the solution of the Poisson equation. The equation being solved is

A complete description of the problem is avilable on the Fenics website.

Code: Define Poisson problem with fem-fenics
 
pkg load fem-fenics msh
import_ufl_Problem ('Poisson')

# Create mesh and define function space
x = y = linspace (0, 1, 33);
mesh = Mesh(msh2m_structured_mesh (x, y, 1, 1:4));

# File Poisson.ufl
# element = FiniteElement("Lagrange", triangle, 1)
V = FunctionSpace('Poisson', mesh);





# Define boundary condition

bc = DirichletBC(V, @(x, y) 0.0, [2;4]);

# Define variational problem
# File Poisson.ufl
# u = TrialFunction(element)
# v = TestFunction(element)
# f = Coefficient(element)
# g = Coefficient(element)

f = Expression ('f', 
                 @(x,y) 10*exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02));
g = Expression ('g', @(x,y) sin (5.0 * x));

# File Poisson.ufl
# a = inner(grad(u), grad(v))*dx
# L = f*v*dx + g*v*ds

a = BilinearForm ('Poisson', V);
L = LinearForm ('Poisson', V, f, g);

# Compute solution

[A, b] = assemble_system (a, L, bc);
sol = A \ b;
u = Function ('u', V, sol);

# Save solution in VTK format

save (u, 'poisson')

# Plot solution
plot (u);
Code: Define Poisson problem with fenics python
 
from dolfin import *


# Create mesh and define function space

mesh = UnitSquareMesh(32, 32)



V = FunctionSpace(mesh, "Lagrange", 1)

# Define Dirichlet boundary (x = 0 or x = 1)
def boundary(x):
    return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS

# Define boundary condition
u0 = Constant(0.0)
bc = DirichletBC(V, u0, boundary)

# Define variational problem

u = TrialFunction(V)
v = TestFunction(V)



f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + 
                pow(x[1] - 0.5, 2)) / 0.02)")
g = Expression("sin(5*x[0])")





a = inner(grad(u), grad(v))*dx
L = f*v*dx + g*v*ds

# Compute solution
u = Function(V)
(A, b) = assemble_system (a, L, bc);
solve(A, u.vector(), b, "gmres", "default")


# Save solution in VTK format
file = File("poisson.pvd")
file << u

# Plot solution
plot(u, interactive=True)

© Copyright 2011, The FEniCS Project

Mixed Formulation for Poisson Equation

A complete description of the problem is avilable on the Fenics website.

Code: Define MixedPoisson problem with fem-fenics
 
pkg load fem-fenics msh
import_ufl_Problem ('MixedPoisson')

# Create mesh
x = y = linspace (0, 1, 33);
mesh = Mesh(msh2m_structured_mesh (x, y, 1, 1:4));

# File MixedPoisson.ufl
#  BDM = FiniteElement("BDM", triangle, 1)
#  DG  = FiniteElement("DG", triangle, 0)
#  W = BDM * DG
V = FunctionSpace('MixedPoisson', mesh);

# Define trial and test function
# File MixedPoisson.ufl
#  (sigma, u) = TrialFunctions(W)
#  (tau, v)   = TestFunctions(W)
#  CG = FiniteElement("CG", triangle, 1)
#  f = Coefficient(CG)
f = Expression ('f', 
                 @(x,y) 10*exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02));

# Define variational form
# File MixedPoisson.ufl
#  a = (dot(sigma, tau) + div(tau)*u + div(sigma)*v)*dx
#  L = - f*v*dx
a = BilinearForm ('MixedPoisson', V);
L = LinearForm ('MixedPoisson', V, f);
















# Define essential boundary


bc1 = DirichletBC (SubSpace (V, 1), @(x,y) [0; -sin(5.0*x)], 1);
bc2 = DirichletBC (SubSpace (V, 1), @(x,y) [0;  sin(5.0*x)], 3);

# Compute solution
[A, b] = assemble_system (a, L, bc1, bc2);
sol = A \ b;
func = Function ('func', V, sol);

sigma = Function ('sigma', func, 1);
u = Function ('u', func, 2);

# Plot solution
plot (sigma);
plot (u);
Code: Define MixedPoisson problem with fenics python
 
from dolfin import *


# Create mesh
mesh = UnitSquareMesh(32, 32)

# Define function spaces and mixed (product) space
BDM = FunctionSpace(mesh, "BDM", 1)
DG = FunctionSpace(mesh, "DG", 0)
W = BDM * DG



# Define trial and test functions
(sigma, u) = TrialFunctions(W)
(tau, v) = TestFunctions(W)



f = Expression
    ("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)")

# Define variational form

a = (dot(sigma, tau) + div(tau)*u + div(sigma)*v)*dx
L = - f*v*dx



# Define function G such that G \cdot n = g
class BoundarySource(Expression):
    def __init__(self, mesh):
        self.mesh = mesh
    def eval_cell(self, values, x, ufc_cell):
        cell = Cell(self.mesh, ufc_cell.index)
        n = cell.normal(ufc_cell.local_facet)
        g = sin(5*x[0])
        values[0] = g*n[0]
        values[1] = g*n[1]
    def value_shape(self):
        return (2,)

G = BoundarySource(mesh)

# Define essential boundary
def boundary(x):
    return x[1] < DOLFIN_EPS or x[1] > 1.0 - DOLFIN_EPS

bc = DirichletBC(W.sub(0), G, boundary)

# Compute solution
w = Function(W)
solve(a == L, w, bc)


(sigma, u) = w.split()


# Plot sigma and u
plot(sigma)
plot(u)
interactive()

© Copyright 2011, The FEniCS Project

Hyperelasticity

This time we compare the code with the c++ version of DOLFIN. A complete description of the problem is avilable on the Fenics website.

Code: HyperElasticity Problem: the ufl file
 
# Function spaces
element = VectorElement("Lagrange", tetrahedron, 1)

# Trial and test functions
du = TrialFunction(element)     # Incremental displacement
v  = TestFunction(element)      # Test function

# Functions
u = Coefficient(element)        # Displacement from previous iteration
B = Coefficient(element)        # Body force per unit volume
T = Coefficient(element)        # Traction force on the boundary

# Kinematics
I = Identity(element.cell().d)  # Identity tensor
F = I + grad(u)                 # Deformation gradient
C = F.T*F                       # Right Cauchy-Green tensor

# Invariants of deformation tensors
Ic = tr(C)
J  = det(F)

# Elasticity parameters
mu    = Constant(tetrahedron)
lmbda = Constant(tetrahedron)

# Stored strain energy density (compressible neo-Hookean model)
psi = (mu/2)*(Ic - 3) - mu*ln(J) + (lmbda/2)*(ln(J))**2

# Total potential energy
Pi = psi*dx - inner(B, u)*dx - inner(T, u)*ds

# First variation of Pi (directional derivative about u in the direction of v)
F = derivative(Pi, u, v)

# Compute Jacobian of F
J = derivative(F, u, du)

© Copyright 2011, The FEniCS Project


Code: Define HyperElasticity problem with fem-fenics
 
pkg load fem-fenics msh
problem = 'HyperElasticity';
import_ufl_Problem (problem);


























































Rotation = @(x,y,z) ...
 [0; ...
 0.5*(0.5 + (y - 0.5)*cos(pi/3) - (z-0.5)*sin(pi/3) - y);...
 0.5*(0.5 + (y - 0.5)*sin(pi/3) + (z-0.5)*cos(pi/3) - z)];






#Create mesh and define function space
x = y = z = linspace (0, 1, 17);
mshd = Mesh (msh3m_structured_mesh (x, y, z, 1, 1:6));
V  = FunctionSpace (problem, mshd);








# Create Dirichlet boundary conditions
bcl = DirichletBC (V, @(x,y,z) [0; 0; 0], 1);
bcr = DirichletBC (V, Rotation, 2);
bcs = {bcl, bcr};


# Define source and boundary traction functions
B = Constant ('B', [0.0; -0.5; 0.0]);
T = Constant ('T', [0.1; 0.0; 0.0]);




# Set material parameters
E = 10.0;
nu = 0.3;
mu = Constant ('mu', E./(2*(1+nu)));
lmbda = Constant ('lmbda', E*nu./((1+nu)*(1-2*nu)));
u = Expression ('u', @(x,y,z) [0; 0; 0]);

# Create (linear) form defining (nonlinear) variational problem
L = ResidualForm (problem, V, mu, lmbda, B, T, u);






# Solve nonlinear variational problem F(u; v) = 0
u0 = assemble (L, bcs{:});
# Create function for the resolution of the NL problem
function [y, jac] = f (problem, xx, V, bc1, bc2, B, T, mu, lmbda)
  u = Function ('u', V, xx);
  a = JacobianForm (problem, V, mu, lmbda, u);
  L = ResidualForm (problem, V, mu, lmbda, B, T, u);
  if (nargout == 1)
    [y, xx] = assemble (L, xx, bc1, bc2);
  elseif (nargout == 2)
    [jac, y, xx] = assemble_system (a, L, xx, bc1, bc2);
  endif
endfunction

fs = @(xx) f (problem, xx, V, bcl, bcr, B, T, mu, lmbda);
[x, fval, info] = fsolve (fs, u0, optimset ("jacobian", "on"));
func = Function ('u', V, x);

# Save solution in VTK format
save (func, 'displacement');


# Plot solution
plot (func);
Code: Define HyperElasticity problem with fenics c++
 
#include <dolfin.h>
#include "HyperElasticity.h"

using namespace dolfin;

// Sub domain for clamp at left end
class Left : public SubDomain
{
  bool inside(const Array<double>& x, bool on_boundary) const
  {
    return (std::abs(x[0]) < DOLFIN_EPS) && on_boundary;
  }
};

// Sub domain for rotation at right end
class Right : public SubDomain
{
  bool inside(const Array<double>& x, bool on_boundary) const
  {
    return (std::abs(x[0] - 1.0) < DOLFIN_EPS) && on_boundary;
  }
};

// Dirichlet boundary condition for clamp at left end
class Clamp : public Expression
{
public:

  Clamp() : Expression(3) {}

  void eval(Array<double>& values, const Array<double>& x) const
  {
    values[0] = 0.0;
    values[1] = 0.0;
    values[2] = 0.0;
  }

};

// Dirichlet boundary condition for rotation at right end
class Rotation : public Expression
{
public:

  Rotation() : Expression(3) {}

  void eval(Array<double>& values, const Array<double>& x) const
  {
    const double scale = 0.5;

    // Center of rotation
    const double y0 = 0.5;
    const double z0 = 0.5;

    // Large angle of rotation (60 degrees)
    double theta = 1.04719755;

    // New coordinates
    double y = y0 + (x[1]-y0)*cos(theta) - (x[2]-z0)*sin(theta);
    double z = z0 + (x[1]-y0)*sin(theta) + (x[2]-z0)*cos(theta);

    // Rotate at right end
    values[0] = 0.0;
    values[1] = scale*(y - x[1]);
    values[2] = scale*(z - x[2]);
  }

};

int main()
{
  // Create mesh and define function space
  UnitCubeMesh mesh (16, 16, 16);
  HyperElasticity::FunctionSpace V(mesh);

  // Define Dirichlet boundaries
  Left left;
  Right right;

  // Define Dirichlet boundary functions
  Clamp c;
  Rotation r;

  // Create Dirichlet boundary conditions
  DirichletBC bcl(V, c, left);
  DirichletBC bcr(V, r, right);
  std::vector<const BoundaryCondition*> bcs;
  bcs.push_back(&bcl); bcs.push_back(&bcr);

  // Define source and boundary traction functions
  Constant B(0.0, -0.5, 0.0);
  Constant T(0.1,  0.0, 0.0);

  // Define solution function
  Function u(V);

  // Set material parameters
  const double E  = 10.0;
  const double nu = 0.3;
  Constant mu(E/(2*(1 + nu)));
  Constant lambda(E*nu/((1 + nu)*(1 - 2*nu)));


  // Create (linear) form defining (nonlinear) variational problem
  HyperElasticity::ResidualForm F(V);
  F.mu = mu; F.lmbda = lambda; F.B = B; F.T = T; F.u = u;

  // Create jacobian dF = F' (for use in nonlinear solver).
  HyperElasticity::JacobianForm J(V, V);
  J.mu = mu; J.lmbda = lambda; J.u = u;

  // Solve nonlinear variational problem F(u; v) = 0
  solve(F == 0, u, bcs, J);















  // Save solution in VTK format
  File file("displacement.pvd");
  file << u;

  // Plot solution
  plot(u);
  interactive();

  return 0;
}
© Copyright 2011, The FEniCS Project


Incompressible Navier-Stokes equations

A complete description of the problem is avilable on the Fenics website.

Code: Define HyperElasticity problem with fem-fenics
 
pkg load fem-fenics msh
import_ufl_Problem ("TentativeVelocity");
import_ufl_Problem ("VelocityUpdate");
import_ufl_Problem ("PressureUpdate");

# We can either load the mesh from the file as in Dolfin but 
# we can also use the msh pkg to generate the L-shape domain
name = [tmpnam ".geo"];
fid = fopen (name, "w");
fputs (fid,"Point (1)  = {0, 0, 0, 0.1};\n");
fputs (fid,"Point (2)  = {1, 0, 0, 0.1};\n");
fputs (fid,"Point (3)  = {1, 0.5, 0, 0.1};\n");
fputs (fid,"Point (4)  = {0.5, 0.5, 0, 0.1};\n");
fputs (fid,"Point (5) = {0.5, 1, 0, 0.1};\n");
fputs (fid,"Point (6) = {0, 1, 0,0.1};\n");

fputs (fid,"Line (1)  = {5, 6};\n");
fputs (fid,"Line (2) = {2, 3};\n");

fputs (fid,"Line(3) = {6,1,2};\n");
fputs (fid,"Line(4) = {5,4,3};\n");
fputs (fid,"Line Loop(7) = {3,2,-4,1};\n");
fputs (fid,"Plane Surface(8) = {7};\n");
fclose (fid);
msho = msh2m_gmsh (canonicalize_file_name (name)(1:end-4),...
                   "scale", 1,"clscale", .2);
unlink (canonicalize_file_name (name));

mesh = Mesh (msho);

# Define function spaces (P2-P1). From ufl file
#  V = VectorElement("CG", triangle, 2)
#  Q = FiniteElement("CG", triangle, 1)
V = FunctionSpace ('VelocityUpdate', mesh);
Q = FunctionSpace ('PressureUpdate', mesh);

# Define trial and test functions. From ufl file
#  u = TrialFunction(V)
#  p = TrialFunction(Q)
#  v = TestFunction(V)
#  q = TestFunction(Q)

# Set parameter values. From ufl file
#  nu = 0.01
dt = 0.01;
T = 3.;




# Define boundary conditions
noslip = DirichletBC (V, @(x,y) [0; 0], [3, 4]);




outflow = DirichletBC (Q, @(x,y) 0, 2);



# Create functions
u0 = Expression ('u0', @(x,y) [0; 0]);



# Define coefficients
k = Constant ('k', dt);
f = Constant ('f', [0; 0]);

# Tentative velocity step. From ufl file
#  eq = (1/k)*inner(u - u0, v)*dx + inner(grad(u0)*u0, v)*dx \
#       + nu*inner(grad(u), grad(v))*dx - inner(f, v)*dx
a1 = BilinearForm ('TentativeVelocity', V, k);


# Pressure update. From ufl file
#  a = inner(grad(p), grad(q))*dx
#  L = -(1/k)*div(u1)*q*dx
a2 = BilinearForm ('PressureUpdate', Q);

# Velocity update
#  a = inner(u, v)*dx
#  L = inner(u1, v)*dx - k*inner(grad(p1), v)*dx
a3 = BilinearForm ('VelocityUpdate', V);

# Assemble matrices
A1 = assemble (a1, noslip);

A3 = assemble (a3, noslip);









# Time-stepping
t = dt; i = 0;
while t < T

  # Update pressure boundary condition
  inflow = DirichletBC (Q, @(x,y) sin(3.0*t), 1);

  # Compute tentative velocity step
  "Computing tentative velocity"
  L1 = LinearForm ('TentativeVelocity', V, k, u0, f);
  b1 = assemble (L1, noslip);
  utmp = A1 \ b1;
  u1 = Function ('u1', V, utmp);

  # Pressure correction
  "Computing pressure correction"
  L2 = LinearForm ('PressureUpdate', Q, u1, k);
  [A2, b2] = assemble_system (a2, L2, inflow, outflow);
  ptmp = A2 \ b2;
  p1 = Function ('p1', Q, ptmp);

  # Velocity correction
  "Computing velocity correction"
  L3 = LinearForm ('VelocityUpdate', V, k, u1, p1);
  b3 = assemble (L3, noslip);
  ut = A3 \ b3;
  u1 = Function ('u0', V, ut);

  # Plot solution
  plot (p1);
  plot (u1);

  # Save to file
  save (p1, sprintf ("p_%3.3d", ++i));
  save (u1, sprintf ("u_%3.3d", i));

  # Move to next time step
  u0 = u1;
  t += dt

end
Code: Define NS problem with fenics python
 
from dolfin import *




# Load mesh from file






















mesh = Mesh("lshape.xml.gz")

# Define function spaces (P2-P1)


V = VectorFunctionSpace(mesh, "CG", 2)
Q = FunctionSpace(mesh, "CG", 1)

# Define trial and test functions
u = TrialFunction(V)
p = TrialFunction(Q)
v = TestFunction(V)
q = TestFunction(Q)

# Set parameter values
dt = 0.01
T = 3
nu = 0.01

# Define time-dependent pressure boundary condition
p_in = Expression("sin(3.0*t)", t=0.0)

# Define boundary conditions
noslip  = DirichletBC(V, (0, 0),
           "on_boundary && \
           (x[0] < DOLFIN_EPS | x[1] < DOLFIN_EPS | \
           (x[0] > 0.5 - DOLFIN_EPS && x[1] > 0.5 - DOLFIN_EPS))")
inflow  = DirichletBC(Q, p_in, "x[1] > 1.0 - DOLFIN_EPS")
outflow = DirichletBC(Q, 0, "x[0] > 1.0 - DOLFIN_EPS")
bcu = [noslip]
bcp = [inflow, outflow]

# Create functions
u0 = Function(V)
u1 = Function(V)
p1 = Function(Q)

# Define coefficients
k = Constant(dt)
f = Constant((0, 0))

# Tentative velocity step
F1 = (1/k)*inner(u - u0, v)*dx + inner(grad(u0)*u0, v)*dx \
     + nu*inner(grad(u), grad(v))*dx - inner(f, v)*dx
a1 = lhs(F1)
L1 = rhs(F1)

# Pressure update
a2 = inner(grad(p), grad(q))*dx
L2 = -(1/k)*div(u1)*q*dx


# Velocity update
a3 = inner(u, v)*dx
L3 = inner(u1, v)*dx - k*inner(grad(p1), v)*dx


# Assemble matrices
A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)

# Use amg preconditioner if available
prec = "amg" if has_krylov_solver_preconditioner("amg") 
             else "default"

# Create files for storing solution
ufile = File("results/velocity.pvd")
pfile = File("results/pressure.pvd")

# Time-stepping
t = dt
while t < T + DOLFIN_EPS:

    # Update pressure boundary condition
    p_in.t = t

    # Compute tentative velocity step
    begin("Computing tentative velocity")
    b1 = assemble(L1)
    [bc.apply(A1, b1) for bc in bcu]
    solve(A1, u1.vector(), b1, "gmres", "default")
    end()

    # Pressure correction
    begin("Computing pressure correction")
    b2 = assemble(L2)
    [bc.apply(A2, b2) for bc in bcp]
    solve(A2, p1.vector(), b2, "gmres", prec)
    end()

    # Velocity correction
    begin("Computing velocity correction")
    b3 = assemble(L3)
    [bc.apply(A3, b3) for bc in bcu]
    solve(A3, u1.vector(), b3, "gmres", "default")
    end()

    # Plot solution
    plot(p1, title="Pressure", rescale=True)
    plot(u1, title="Velocity", rescale=True)

    # Save to file
    ufile << u1
    pfile << p1

    # Move to next time step
    u0.assign(u1)
    t += dt
    print "t =", t

# Hold plot
interactive()
© Copyright 2011, The FEniCS Project