

CLASSICAL MECHANICS

DISCRETE MECHANICS

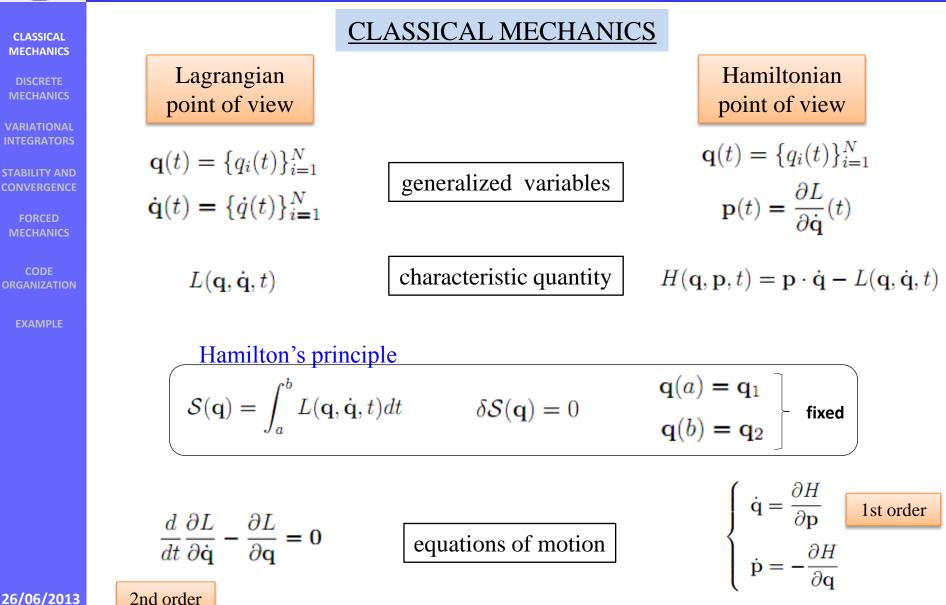
VARIATIONAL INTEGRATORS

STABILITY AND CONVERGENCE

FORCED MECHANICS

CODE ORGANIZATION

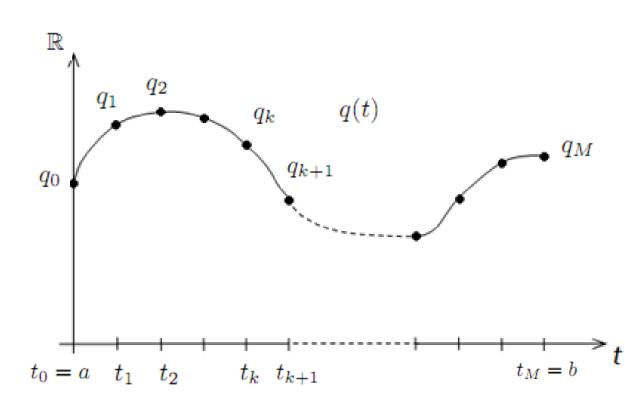
EXAMPLE



SPECTRAL VARIATIONAL INTEGRATORS

Roberto Porcù

Mattia Penati



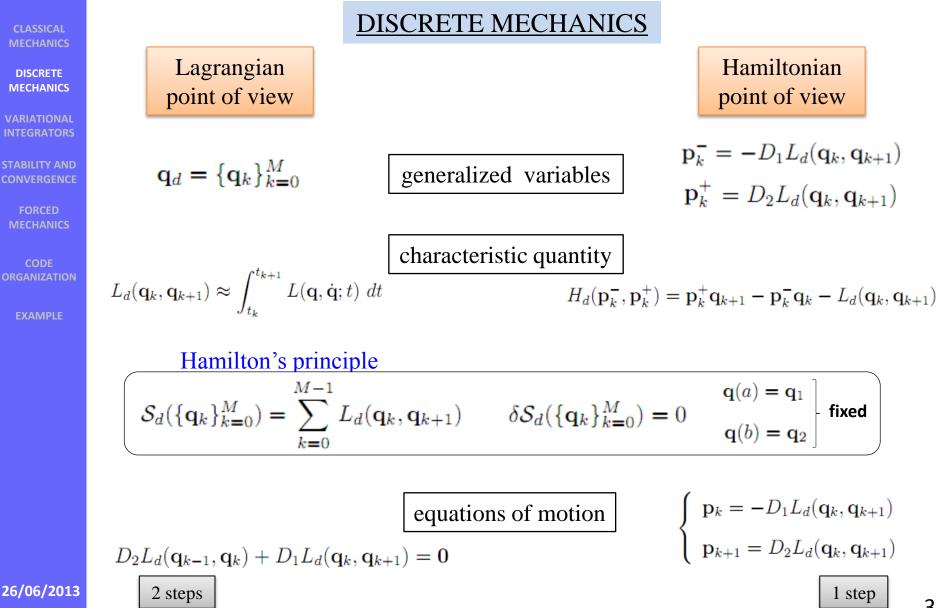
DISCRETE MECHANICS

$$\{t_k = kh\}_{k=0}^M$$

CLASSICAL MECHANICS

DISCRETE MECHANICS

VARIATIONAL INTEGRATORS


STABILITY AND CONVERGENCE

FORCED MECHANICS

CODE ORGANIZATION

EXAMPLE

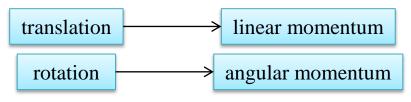
DISCRETE MECHANICS

VARIATIONAL INTEGRATORS

STABILITY AND CONVERGENCE

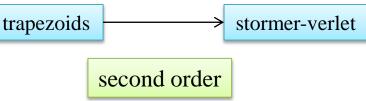
FORCED MECHANICS

CODE ORGANIZATION


EXAMPLE

Discrete Liouville's Theorem

The Hamiltonian map $(\mathbf{q}_k, \mathbf{p}_k) \mapsto (\mathbf{q}_{k+1}, \mathbf{p}_{k+1})$ defined by discrete Hamilton's equations preserves volume in discrete phase space (simplecticity).


Discrete Noether's Theorem

If the discrete Lagrangian is invariant under the action of a group G, then the corresponding discrete Lagrangian momentum map is a conserved quantity.

Variational error analysis

If L_d is a discrete Lagrangian of order p then the Hamiltonian map has the same order.

DISCRETE MECHANICS

VARIATIONAL INTEGRATORS

STABILITY AND CONVERGENCE

FORCED

MECHANICS

OctConf 2013 - Politecnico di Milano

VARIATIONAL INTEGRATORS

Variational integrators differ from each other for the quadrature rule used to approximate the action.

the order of the method is equal to the quadrature order

1) Symplectic Euler

CODE DRGANIZATION

EXAMPLE

$L_d(\mathbf{q}_k, \mathbf{q}_{k+1}) = hL\big(\mathbf{q}_k, \frac{\mathbf{q}_{k+1} - \mathbf{q}_k}{h}\big)$

2) Midpoint Rule

$$L_d(\mathbf{q}_k, \mathbf{q}_{k+1}, h) = hL\left(\frac{\mathbf{q}_k + \mathbf{q}_{k+1}}{2}, \frac{\mathbf{q}_{k+1} - \mathbf{q}_k}{h}\right)$$

3) Stormer-Verlet

$$L_d(\mathbf{q}_k, \mathbf{q}_{k+1}) = \frac{1}{2}hL\left(\mathbf{q}_k, \frac{\mathbf{q}_{k+1} - \mathbf{q}_k}{h}\right) + \frac{1}{2}hL\left(\mathbf{q}_{k+1}, \frac{\mathbf{q}_{k+1} - \mathbf{q}_k}{h}\right)$$

DISCRETE MECHANICS

VARIATIONAL INTEGRATORS

STABILITY AND CONVERGENCE

FORCED MECHANICS

CODE ORGANIZATION

EXAMPLE

4) Spectral Variational Integrators

For simplicity let $q(t) \in \mathbb{R}$ with $t \in [t_k, t_{k+1}]$, $t_{k+1} - t_k = h$.

<u>Rescaled problem:</u> q = q(z(t)) $z(t) = \frac{2}{h}t - 1$ $z \in [-1, 1]$

Spatial discretization

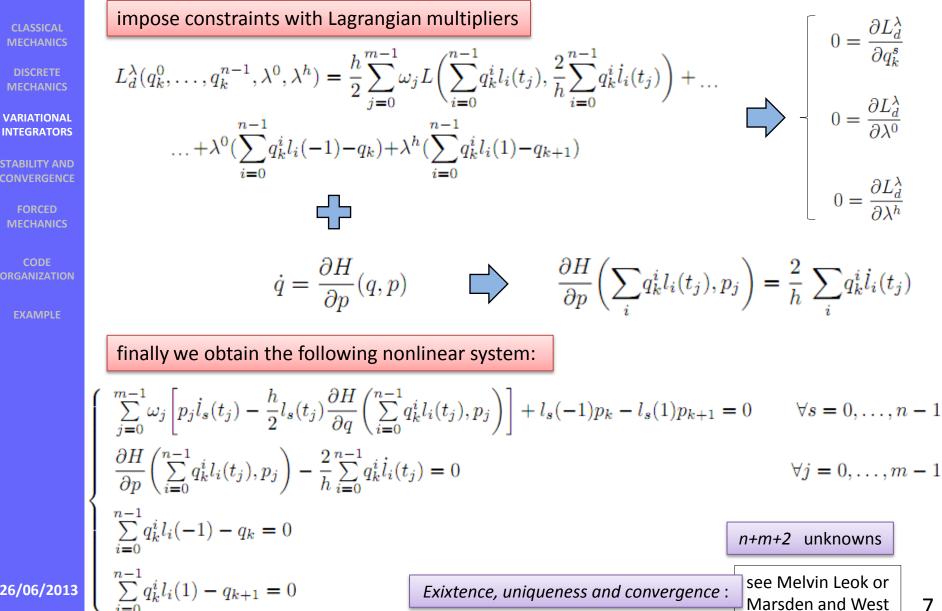
$$q_n(z(t)) = \sum_{i=0}^{n-1} q_k^i l_i(z(t)) \qquad \dot{q}_n(z(t)) = \sum_{i=0}^{n-1} q_k^i \dot{l}_i(z(t)) \frac{dz}{dt}$$

Gauss quadrature rule

$$\int_{t_k}^{t_{k+1}} L(q(t), \dot{q}(t)) dt = \int_{-1}^1 L(q(z(t)), \dot{q}(z(t))) \frac{h}{2} dz \approx \frac{h}{2} \sum_{j=0}^{m-1} \omega_j L(q(t_j), \dot{q}(t_j))$$

Hamilton's principle

$$\begin{aligned} & \underset{q_{n} \in V([t_{k}, t_{k+1}]; \mathbb{R})}{\text{ext}} \frac{h}{2} \sum_{j=0}^{m-1} \omega_{j} L\left(\sum_{i=0}^{n-1} q_{k}^{i} l_{i}(t_{j}), \frac{2}{h} \sum_{i=0}^{n-1} q_{k}^{i} \dot{l}_{i}(t_{j})\right) \\ & \text{with constraints:} \quad q_{k} = \sum_{i=0}^{n-1} q_{k}^{i} l_{i}(-1) \qquad q_{k+1} = \sum_{i=0}^{n-1} q_{k}^{i} l_{i}(1) \end{aligned}$$



DISCRETE MECHANICS

VARIATIONAL

MECHANICS

OctConf 2013 - Politecnico di Milano

CLASSICAL

DISCRETE

OctConf 2013 - Politecnico di Milano

STABILITY and CONVERGENCE ANALYSIS

ARMONIC OSCILLATOR

VARIATIONAL

STABILITY AND CONVERGENCE

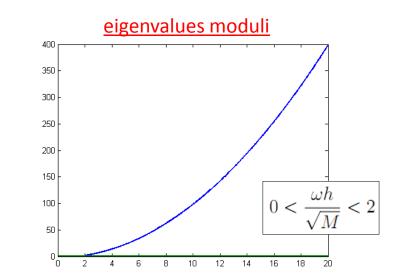
FORCED MECHANICS

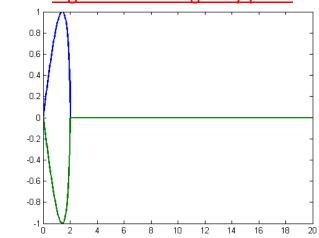
CODE ORGANIZATION

EXAMPLE

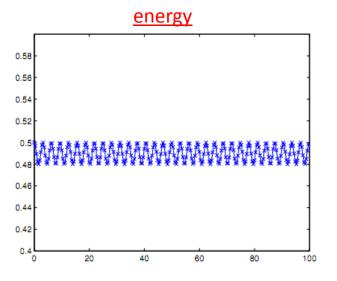
equation
$$M\ddot{q}(t) + \omega^2 q(t) = 0$$
 exact solution $q(t) = \cos\left(\frac{\omega}{\sqrt{M}}t + \phi\right)$
Hamiltonian $H(q, p) = \frac{1}{2M}(p(t))^2 + \frac{1}{2}(\omega q(t))^2$
1) STORMER-VERLET
$$\begin{cases} p_k = M\frac{q_{k+1} - q_k}{h} + \frac{1}{2}h\omega^2 q_k\\ p_{k+1} = M\frac{q_{k+1} - q_k}{h} - \frac{1}{2}h^2\omega^2 q_{k+1} \end{cases}$$

$$\begin{bmatrix} q_{k+1}\\ p_{k+1} \end{bmatrix} = \underbrace{\begin{bmatrix} (1 - \frac{\omega^2 h^2}{2M}) & \frac{h}{M}\\ h\omega^2 \left(\frac{h^2\omega^2}{4M} - 1\right) & (1 - \frac{h^2\omega^2}{2M}) \end{bmatrix}}_{\Omega} \begin{bmatrix} q_k\\ p_k \end{bmatrix} \qquad det(\Omega) = 1 \\ tr(\Omega) = 2 - \frac{\omega^2 h^2}{M}$$




CLASSICAL

DISCRETE


STABILITY AND CONVERGENCE

EXAMPLE

eigenvalues imaginary parts

h	$\ \mathbf{e}\ _{l^{\infty}}$	order
0.8	$0.22 \cdot 10^{0}$	
0.4	$0.54 \cdot 10^{-1}$	2.05
0.2	$0.13 \cdot 10^{-1}$	2.01
0.1	$0.33 \cdot 10^{-2}$	2.00
0.05	$0.82 \cdot 10^{-3}$	2.00
0.025	$0.21 \cdot 10^{-3}$	2.00

DISCRETE

STABILITY AND CONVERGENCE 2) SPECTRAL VARIATIONAL INTEGRATORS

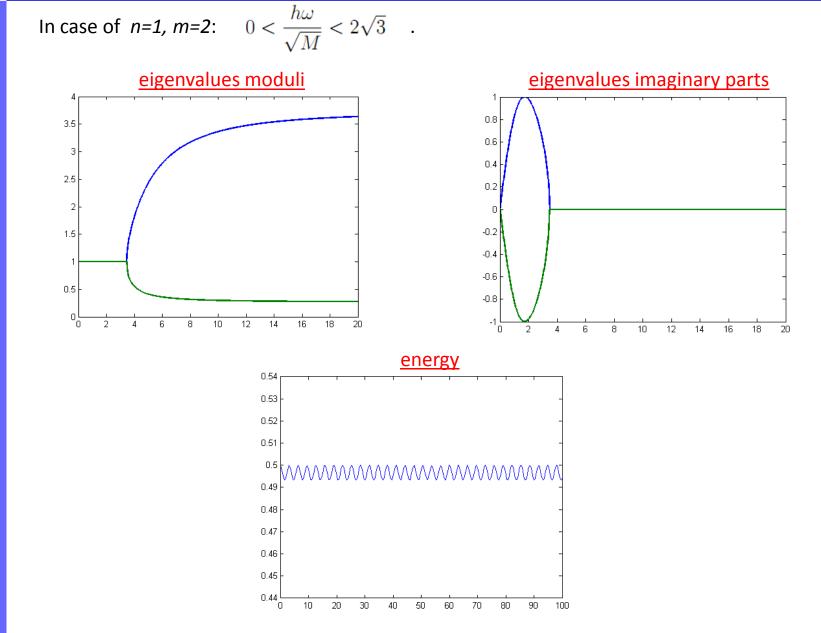
$$\mathcal{S}_{d}^{\lambda}(\{q_{k}^{i}\}_{i=0}^{n-1}) = \sum_{j=1}^{m} \left[\frac{M\alpha_{j}}{h} \left(\sum_{i} q_{k}^{i} \dot{l}_{i}(z_{j}) \right)^{2} - \frac{h\omega^{2}\alpha_{j}}{4} \left(\sum_{i} q_{k}^{i} l_{i}(z_{j}) \right)^{2} \right] + \dots \left[\begin{array}{c} \mathbf{q} = [q_{k}^{0}, \dots, q_{k}^{n-1}]^{T} \\ \boldsymbol{\lambda} = [\lambda^{0}, \lambda^{h}]^{T} \\ \mathbf{g} = \begin{bmatrix} q_{k} \\ q_{k+1} \end{bmatrix} \\ \mathbf{g} = \begin{bmatrix} q_{k} \\ q_{k} \end{bmatrix} \\ \mathbf{g} =$$

$$\begin{array}{c} q_{k+1} \\ p_{k+1} \end{array} = \underbrace{-\frac{1}{C_{12}} \begin{bmatrix} C_{11} & 1 \\ det(C) & C_{22} \end{bmatrix}}_{\Omega} \begin{bmatrix} q_k \\ p_k \end{bmatrix}$$

n = maximum degree of basis polynomials*m* = number of quadrature nodes

CLASSICAL MECHANICS

DISCRETE MECHANICS

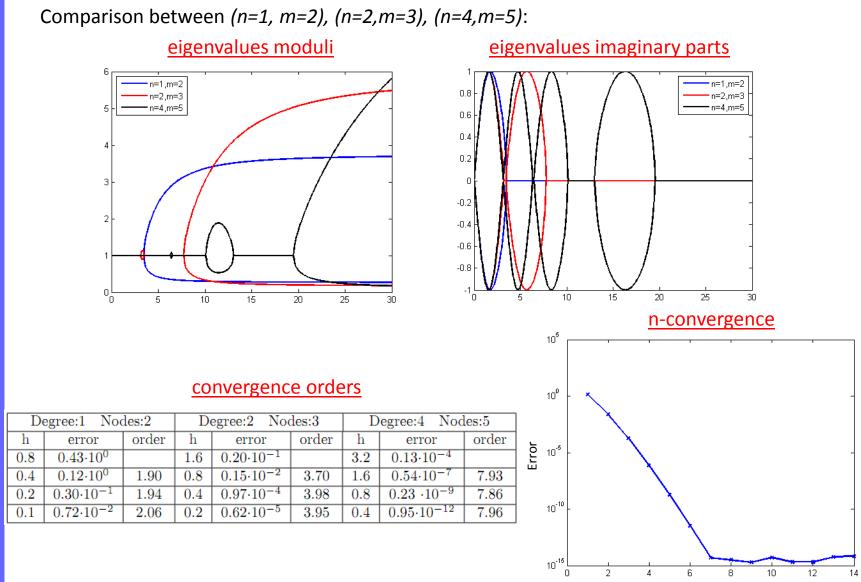

VARIATIONAL

STABILITY AND CONVERGENCE

FORCED MECHANICS

CODE ORGANIZATIO

EXAMPLE



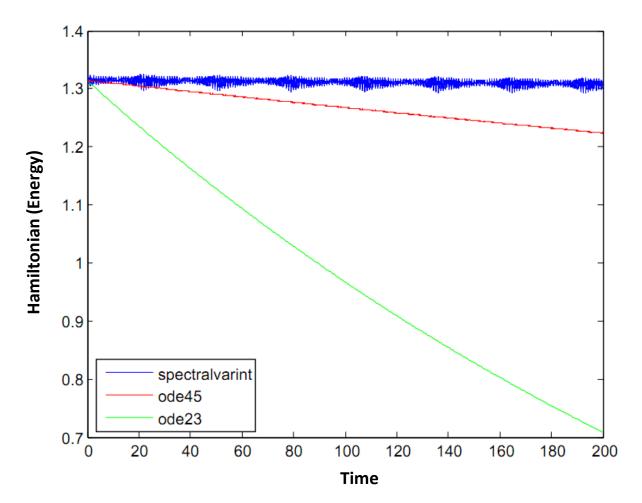
DISCRETE

STABILITY AND CONVERGENCE

EXAMPLE

OctConf 2013 - Politecnico di Milano

Maximum polynomials degree


12

DISCRETE

ARMONIC OSCILLATOR

Spectral Variational Integrators do not artificially dissipate energy

CONVERGENCE

STABILITY AND

MECHANICS

CODE DRGANIZATION

EXAMPLE

DISCRETE

STABILITY AND

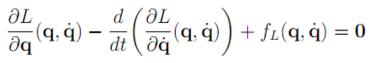
FORCED MECHANICS

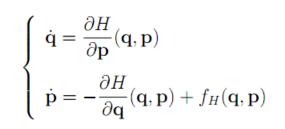
OctConf 2013 - Politecnico di Milano

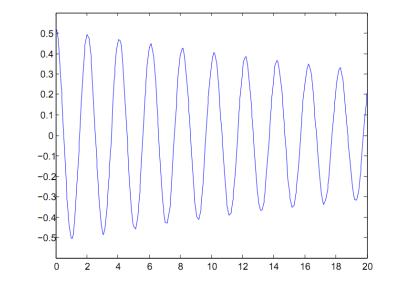
FORCED MECHANICS

Hamiltonian point of view

Lagrangian point of view

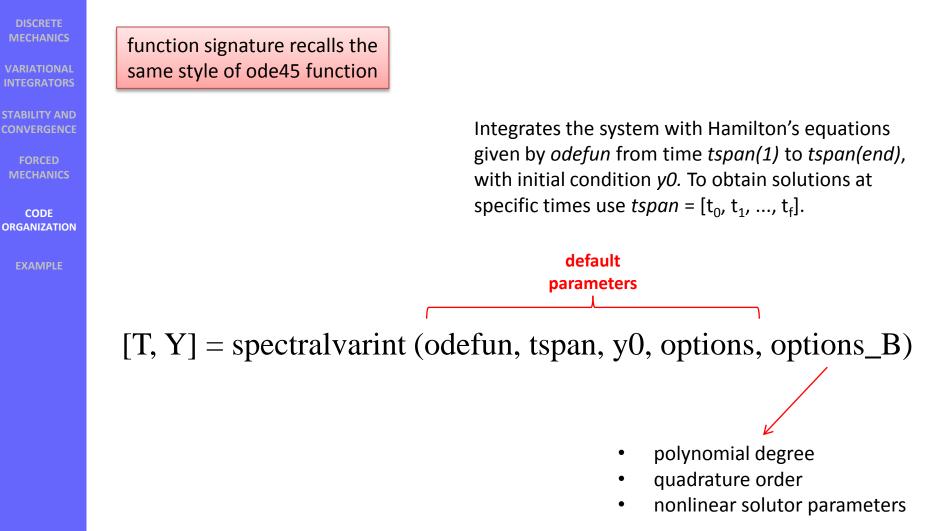

Lagrange-d'Alembert principle


$$\delta \int_0^T L(\mathbf{q}, \dot{\mathbf{q}}) dt + \int_0^T f_L(\mathbf{q}, \dot{\mathbf{q}}) \cdot \delta \mathbf{q}(t) dt = 0$$


CODE RGANIZATION

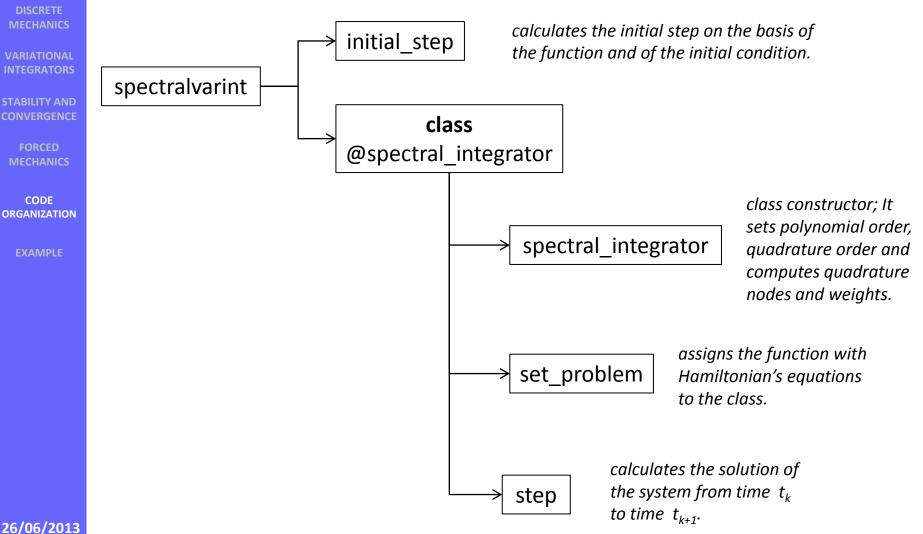
EXAMPLE

26/06/2013



Example Simple pendulum dumped with friction-type forcing.

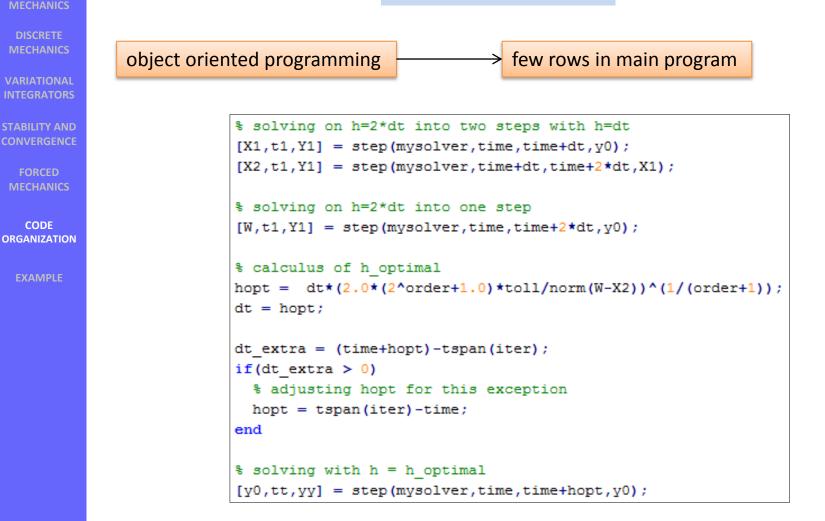
14


CODE ORGANIZATION

OctConf 2013 - Politecnico di Milano

CODE ORGANIZATION

16



CLASSICAL

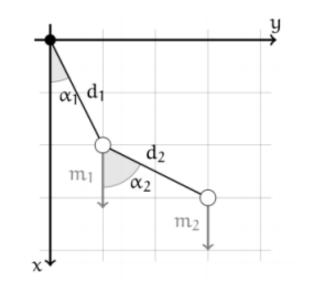
CODE

OctConf 2013 - Politecnico di Milano

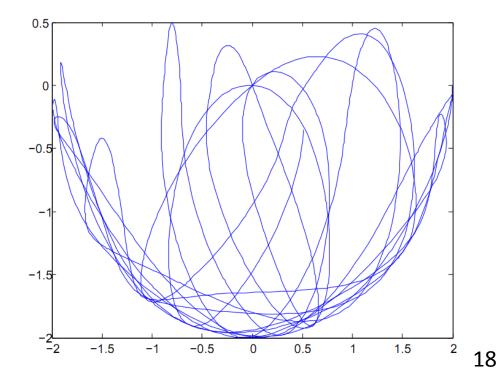
MAIN PROGRAM

CLASSICAL

DISCRETE


STABILITY AND

EXAMPLE


OctConf 2013 - Politecnico di Milano

EXAMPLE

DOUBLE PENDULUM

$$\begin{array}{l} T = \frac{m_1 + m_2}{2} d_1^2 \dot{\alpha}_1^2 + \frac{m_2}{2} d_2^2 \dot{\alpha}_2^2 + m_2 d_1 d_2 \dot{\alpha}_1 \dot{\alpha}_2 \cos(\alpha_1 - \alpha_2) \\ \\ U = -(m_1 + m_2) g d_1 \cos(\alpha_1) - m_2 g d_2 \cos(\alpha_2) \end{array}$$

CLASSICAL MECHANICS

DISCRETE MECHANICS

VARIATIONAL INTEGRATORS

STABILITY AND CONVERGENCE

FORCED MECHANICS

CODE DRGANIZATION

EXAMPLE

- Add the possibility to have a quadrature nodes number indipendent from maximum polynomials degree;
- Add the possibility to use the Jacobian in the solution of the nonlinear system;
- Add the possibility to do polynomials degree adaptivity;
- Optimize the code; especially It would be very interesting to implement in
- C++ the expensive parts of the code (now is all implemented in Octave).

DISCRETE

VARIATIONAL INTEGRATORS

STABILITY AND CONVERGENCE

FORCED MECHANICS

CODE ORGANIZATION

EXAMPLE

OctConf 2013 - Politecnico di Milano

THANKS